Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Thromb Thrombolysis ; 55(3): 566-570, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36508084

ABSTRACT

BACKGROUND: Assessing simultaneous generation of thrombin (TG) and plasmin (PG) is an approach to evaluate the balance between coagulation and fibrinolysis with sensitivity to predict endogenous thrombin and plasmin generation. The addition of thrombomodulin (TM), provides the essential component for thrombin activation of protein C and thrombin-activatable fibrinolysis inhibitor. However, the influence of sex on the balance between TG and PG with and without TM addition has not been investigated to date. OBJECTIVES: To investigate the possible sex-based differences in TG and PG in the presence and absence of TM. METHODS: Simultaneous TG and PG were measured in plasma samples obtained from 17 males and 17 females upon tissue factor and tissue plasminogen activator addition. Thrombin- and plasmin-specific fluorogenic substrates Z-Gly-Gly-Arg-AMC and Boc-Glu-Lys-Lys-AMC were used in the study. Thrombin and plasmin peak height (TPH and PPH) and production rate (TPR and PPR) values were determined. To evaluate the balance between TG and PG, the ratios between TPH and PPH (TPH/PPH) and TPR and PPR (TPR/PPR) were calculated. RESULTS AND CONCLUSIONS: TPH between males and females demonstrated significant difference regardless of TM addition. TPR demonstrated differences between males and females only upon TM addition, while PG parameters was not dependent on the sex of the donor. TM significantly lowered TPH/PPH in males, and enhanced TPR/PPR in females. Thus, TPH/PPH and TPR/PPR significantly differed between men and women. Our results indicate that TM may act differently in males and females by shifting the underlying TG/PG balance to fibrinolysis in males and to coagulation in females.


Subject(s)
Fibrinolysin , Thrombin , Male , Female , Humans , Thrombin/metabolism , Tissue Plasminogen Activator , Thrombomodulin/metabolism , Fibrinolysis/physiology
2.
Clin Appl Thromb Hemost ; 28: 10760296221120422, 2022.
Article in English | MEDLINE | ID: mdl-35996317

ABSTRACT

INTRODUCTION: Protease activated receptors 1 (PAR1) and 4 (PAR4) agonists are used to study platelet activation. Data on platelet activation are extrapolated across experimental settings. C1-inhibitor (C1INH) is a protease inhibitor present in plasma but not in isolated platelet suspensions. Here we show that C1INH affects platelet activation through PAR1 and PAR4 agonists. METHODS: Platelets were isolated from healthy donor whole blood and then labeled with anti-CD62P and PAC1 antibodies. The platelet suspensions were exposed to PAR1 agonists SFLLRN, TFLLR and TFLLRN; PAR4 agonists AYPGKF and GYPGQV; ADP and thrombin. Flow-cytometric measurements were performed in 5, 10 and 15 min after activation. RESULTS: 0.25 mg/ml C1INH addition made platelets to faster expose CD62P and glycoprotein IIb/IIIa complex after activation with PAR1 agonists. Conversely, C1INH addition led to inhibition of platelet activation with PAR4 agonists and thrombin. Activation with ADP was not affected by C1INH. CONCLUSIONS: Our results suggest that C1INH can modify platelet activation in the presence of synthetic PAR agonists used in platelet research. These observations may be relevant to the development of new methods to assess platelet function.


Subject(s)
Complement C1 Inhibitor Protein , Receptor, PAR-1 , Receptors, Thrombin , Blood Platelets , Complement C1 Inhibitor Protein/physiology , Humans , Platelet Activation , Platelet Aggregation , Receptor, PAR-1/physiology , Receptors, Thrombin/agonists , Receptors, Thrombin/physiology , Thrombin/pharmacology
3.
J Thromb Haemost ; 20(10): 2255-2269, 2022 10.
Article in English | MEDLINE | ID: mdl-35810466

ABSTRACT

BACKGROUND: Deficiency in blood coagulation factor VIII (FVIII) results in life-threating bleeding (hemophilia A) treated by infusions of FVIII concentrates. To improve disease treatment, FVIII has been modified to increase its plasma half-life, which requires understanding mechanisms of FVIII catabolism. An important catabolic actor is hepatic low density lipoprotein receptor-related protein 1 (LRP1), which also regulates many other clinically significant processes. Previous studies showed complexity of FVIII site for binding LRP1. OBJECTIVES: To characterize binding sites between FVIII and LRP1 and suggest a model of the interaction. METHODS: A series of recombinant ligand-binding complement-type repeat (CR) fragments of LRP1 including mutated variants was generated in a baculovirus system and tested for FVIII interaction using surface plasmon resonance, tissue culture model, hydrogen-deuterium exchange mass spectrometry, and in silico. RESULTS: Multiple CR doublets within LRP1 clusters II and IV were identified as alternative FVIII-binding sites. These interactions follow the canonical binding mode providing major binding energy, and additional weak interactions are contributed by adjacent CR domains. A representative CR doublet was shown to have multiple contact sites on FVIII. CONCLUSIONS: FVIII and LRP1 interact via formation of multiple complex contacts involving both canonical and non-canonical binding combinations. We propose that FVIII-LRP1 interaction occurs via switching such alternative binding combinations in a dynamic mode, and that this mechanism is relevant to other ligand interactions of the low-density lipoprotein receptor family members including LRP1.


Subject(s)
Factor VIII , Low Density Lipoprotein Receptor-Related Protein-1 , Binding Sites , Deuterium , Factor VIII/metabolism , Humans , Ligands , Lipoproteins, LDL/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Protein Binding , Receptors, LDL/genetics , Receptors, LDL/metabolism
4.
Curr Med Chem ; 29(3): 467-488, 2022.
Article in English | MEDLINE | ID: mdl-34348603

ABSTRACT

Human C1-Inhibitor (C1INH), also known as C1-esterase inhibitor, is an important multifunctional plasma glycoprotein that is uniquely involved in a regulatory network of complement, contact, coagulation, and fibrinolytic systems. C1INH belongs to a superfamily of serine proteinase inhibitors (serpins) and exhibits its inhibitory activities towards several target proteases of plasmatic cascades, operating as a major antiinflammatory protein in the circulation. In addition to its inhibitory activities, C1INH is also involved in non-inhibitory interactions with some endogenous proteins, polyanions, cells and infectious agents. While C1INH is essential for multiple physiological processes, it is better known for its deficiency with regards to Hereditary Angioedema (HAE), a rare autosomal dominant disease clinically manifested by recurrent acute attacks of increased vascular permeability and edema. Since the link was first established between functional C1INH deficiency in plasma and HAE in the 1960s, tremendous progress has been made in the biochemical characterization of C1INH and its therapeutic development for replacement therapies in patients with C1INH-dependent HAE. Various C1INH biological activities, recent advances in the HAE-targeted therapies, and availability of C1INH commercial products have prompted intensive investigation of the C1INH potential for the treatment of clinical conditions other than HAE. This article provides an updated overview of the structural and biological activities of C1INH, its role in HAE pathogenesis, and recent advances in the research and therapeutic development of C1INH; it also considers some trends for using C1INH therapeutic preparations for applications other than angioedema, from sepsis and endotoxin shock to severe thrombotic complications in COVID-19 patients.


Subject(s)
Angioedemas, Hereditary , Complement C1 Inhibitor Protein , Angioedemas, Hereditary/drug therapy , COVID-19 , Humans
5.
J Biol Chem ; 297(1): 100842, 2021 07.
Article in English | MEDLINE | ID: mdl-34058195

ABSTRACT

The low-density lipoprotein receptor (LDLR) family of receptors are cell-surface receptors that internalize numerous ligands and play crucial role in various processes, such as lipoprotein metabolism, hemostasis, fetal development, etc. Previously, receptor-associated protein (RAP) was described as a molecular chaperone for LDLR-related protein 1 (LRP1), a prominent member of the LDLR family. We aimed to verify this role of RAP for LRP1 and two other LDLR family receptors, LDLR and vLDLR, and to investigate the mechanisms of respective interactions using a cell culture model system, purified system, and in silico modelling. Upon coexpression of RAP with clusters of the ligand-binding complement repeats (CRs) of the receptors in secreted form in insect cells culture, the isolated proteins had increased yield, enhanced folding, and improved binding properties compared with proteins expressed without RAP, as determined by circular dichroism and surface plasmon resonance. Within LRP1 CR-clusters II and IV, we identified multiple sites comprised of adjacent CR doublets, which provide alternative bivalent binding combinations with specific pairs of lysines on RAP. Mutational analysis of these lysines within each of isolated RAP D1/D2 and D3 domains having high affinity to LRP1 and of conserved tryptophans on selected CR-doublets of LRP1, as well as in silico docking of a model LRP1 CR-triplet with RAP, indicated a universal role for these residues in interaction of RAP and LRP1. Consequently, we propose a new model of RAP interaction with LDLR family receptors based on switching of the bivalent contacts between molecules over time in a dynamic mode.


Subject(s)
LDL-Receptor Related Protein-Associated Protein/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Protein Folding , Receptors, LDL/metabolism , DNA Mutational Analysis , Humans , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/chemistry , Molecular Docking Simulation , Protein Binding , Repetitive Sequences, Amino Acid
6.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530421

ABSTRACT

Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term "heme" is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293FTM (HEK293) cell system. In this report, we examine rhHPX in comparison with plasma HPX using a systematic analysis of protein structural and functional characteristics related to heme binding. Analysis of rhHPX by UV/Vis absorption spectroscopy, circular dichroism (CD), size-exclusion chromatography (SEC)-HPLC, and catalase-like activity demonstrated a similarity to HPX fractionated from plasma. In particular, the titration of HPX apo-protein(s) with heme was performed for the first time using a wide range of heme concentrations to model HPX-heme interactions to approximate physiological conditions (from extremely low to more than two-fold heme molar excess over the protein). The CD titration data showed an induced bisignate CD Soret band pattern typical for plasma and rhHPX versions at low heme-to-protein molar ratios and demonstrated that further titration is dependent on the amount of protein-bound heme to the extent that the arising opposite CD couplet results in a complete inversion of the observed CD pattern. The data generated in this study suggest more than one binding site in both plasma and rhHPX. Furthermore, our study provides a useful analytical platform for the detailed characterization of HPX-heme interactions and potentially novel HPX fusion constructs.


Subject(s)
Heme/metabolism , Hemopexin/metabolism , Recombinant Proteins , Biological Transport , Circular Dichroism , Heme/chemistry , Hemopexin/chemistry , Humans , Hydrogen Peroxide/metabolism , Methemalbumin , Nitric Oxide/metabolism , Photoelectron Spectroscopy , Protein Binding , Temperature
7.
Sci Rep ; 10(1): 3885, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127577

ABSTRACT

Animal models of hemostasis are often extrapolated to humans; however, only a few studies have compared coagulation and fibrinolysis across species. Simultaneous thrombin (TG) and plasmin (PG) generation is useful to assessing coagulation and fibrinolysis within the same sample. In this study, we performed simultaneous TG and PG analysis in blood plasma samples from humans and 6 species commonly evaluated in pre-clinical research. TG and PG were investigated in male and female donor platelet-poor plasmas (PPP) obtained from 28 healthy humans, 10 baboons, 12 rhesus monkeys, 20 Yorkshire pigs, 20 Sprague-Dawley rats, 10 New Zealand White rabbits and 14 Hartley guinea pigs. The continuous generation of the 7-amino-4-methylcoumarin (AMC) from substrates specific to thrombin or plasmin was monitored. The thrombin and plasmin concentration peak heights (PH) and production rates (PR) were calculated. TG and PG parameters from baboon and rhesus macaque plasma approximated that of humans. The other species differed significantly from both human and non-human primates. For example, swine and rat plasmas demonstrated similar TG, but swine plasmas did not generate plasmin. TG and PG parameters from Guinea pig samples were extremely low, while rabbit plasmas showed variable PG curves demonstrating one or two peaks with low and high PR values, respectively. Correlations between PH and PR values were significant with the exceptions of human PG, baboon TG, rat TG and Guinea pig PG. These findings are informative to pre-clinical animal species selection and optimization of coagulation and fibrinolysis translational research.


Subject(s)
Fibrinolysin/biosynthesis , Thrombin/biosynthesis , Animals , Female , Humans , Male , Plasma/metabolism , Species Specificity
9.
Front Genet ; 10: 310, 2019.
Article in English | MEDLINE | ID: mdl-31031800

ABSTRACT

The goal of this work was to determine the effect of nonablative syngeneic transplantation of young bone marrow (BM) to laboratory animals (mice) of advanced age upon maximum duration of their lifespan. To do this, transplantation of 100 million nucleated cells from BM of young syngeneic donors to an old nonablated animal was performed at the time when half of the population had already died. As a result, the maximum lifespan (MLS) increased by 28 ± 5%, and the survival time from the beginning of the experiment increased 2.8 ± 0.3-fold. The chimerism of the BM 6 months after the transplantation was 28%.

10.
J Thromb Thrombolysis ; 48(1): 81-87, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31030323

ABSTRACT

C1-inhibitor (C1INH) was shown to enhance thrombin generation (TG) in the presence of thrombomodulin (TM) by reducing production of activated protein C. Because C1INH is known to inhibit fibrinolytic system proteases, the objective of this study was to evaluate the effect of moderate (3 IU/ml) and high (16 IU/ml) C1INH concentrations on TG and plasmin generation (PG) in the presence of TM. These concentrations were evaluated based on expected maximum plasma levels following C1INH replacement therapy and recently suggested supraphysiologic dosing. TG and PG were investigated in platelet poor plasmas obtained from 21 healthy donors. An assay designed to monitor the continuous generation of the 7-amino-4-methylcoumarin fluorescence from substrates specific to thrombin or plasmin was used to evaluate the impact of C1INH activity. To characterize the C1INH effects on TG and PG, the thrombin and plasmin concentration peaks and production rates were calculated. TM addition to donor plasma shifted the concentration dependence of C1INH on TG parameters from reduction to enhancement. Conversely, PG parameters were significantly reduced by 16 IU/ml in both the presence and absence of TM. Moderate C1INH concentration (3 IU/ml) reduced TG and PG in the absence of TM but did not significantly affect these parameters in the presence of TM. Finally, 3 IU/ml of C1INH reduced PG more so than TG in the absence of TM. The presented results suggest a mechanism by which C1INH could potentiate thrombosis by inhibition of fibrinolysis.


Subject(s)
Complement C1 Inhibitor Protein/pharmacology , Fibrinolysin/antagonists & inhibitors , Thrombin/drug effects , Thrombomodulin/physiology , Blood Coagulation , Blood Specimen Collection , Dose-Response Relationship, Drug , Fibrinolysin/biosynthesis , Fibrinolysis/drug effects , Healthy Volunteers , Humans , Thrombin/metabolism , Thrombosis/chemically induced
11.
Thromb Res ; 176: 54-60, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784776

ABSTRACT

Package inserts for C1-esterase inhibitor (C1INH) products include warnings for an elevated risk of possible thrombosis in certain individuals, referring to thromboembolic events (TEEs) that were reported to occur after C1INH infusions. However, the mechanism(s) that could explain possible development of TEEs due to C1INH remains unknown. In this work, we evaluated plausible impact of C1INH on the protein C (PC) anticoagulant system. We performed thrombin generation (TG) assays (TGA) and analyzed spatial fibrin clot propagation using thrombodynamics in plasma of individual donors after the addition of thrombomodulin (TM) and C1INH. The addition of C1INH was consistent with the plasma concentrations resulting from doses currently approved for the HAE treatment up to ones consistent with off-label use in patients with risk of inflammation. 16 IU/ml of C1INH significantly enhanced thrombin peak (TP) generation in the presence of 12 and 15 nM TM. TG enhancement was observed by the addition of C1INH to make concentrations equal to 2 and 4 IU/ml in some donor plasmas. C1INH addition in the presence of TM enhanced the stop time of spatial clot growth in Thrombodynamics assay. A chromogenic activity assay demonstrated that C1INH inhibited PC activation by thrombin in the presence of TM. Substitution of TM with APC in TGA attenuated the TP enhancing effect of C1INH. The collective results of the present study suggest a concentration dependent C1INH interaction with the PC system. This study introduces a plausible TM-dependent mechanism, that may explain reported TEEs via suppressed production of APC in the presence of C1INH.


Subject(s)
Complement C1 Inhibitor Protein/metabolism , Fibrin/metabolism , Thrombin/metabolism , Thrombomodulin/metabolism , Thrombosis/metabolism , Blood Coagulation , Complement C1 Inhibitor Protein/analysis , Fibrin/analysis , Humans , Thrombin/analysis , Thrombomodulin/analysis , Thrombosis/blood
12.
Curr Opin Hematol ; 25(6): 452-458, 2018 11.
Article in English | MEDLINE | ID: mdl-30281034

ABSTRACT

PURPOSE OF REVIEW: After transfusion, a percentage of red blood cells undergo hemolysis within macrophages. Intravascular exposures to hemin and hemoglobin (Hb) can occur after storage bag hemolysis, some transfusion reactions, during use of medical assist devices and in response to bacterial hemolysins. Proteins that regulate iron, hemin and Hb either become saturated after iron excess (transferrin, Tf) or depleted after hemin (hemopexin, Hpx) and Hb (haptoglobin, Hp) excess. Protein saturation or stoichiometric imbalance created by transfusion increases exposure to non-Tf bound iron, hemin and Hb. Tf, Hpx and Hp are being developed for hematological disorders where iron, hemin and Hb contribute to pathophysiology. However, complexed to their ligands, each represents a potential iron source for pathogens, which may complicate the use of these proteins. RECENT FINDINGS: Erythrophagocytosis by macrophages and processes of cell death that lead to reactive iron exposure are increasingly described. In addition, the effects of transfusion introduced circulatory hemin and Hb are described in the literature, particularly following large volume transfusion, infection and during concomitant medical device use. SUMMARY: Supplementation with Tf, Hpx and Hp suggests therapeutic potential in conditions of extravascular/intravascular hemolysis. However, their administration following transfusion may require careful assessment of concomitant disease.


Subject(s)
Blood Transfusion , Erythrocytes/metabolism , Hematologic Diseases/therapy , Hemoglobins/metabolism , Hemopexin/metabolism , Transferrin/metabolism , Hemoglobins/administration & dosage , Hemopexin/administration & dosage , Humans , Transferrin/administration & dosage
13.
Nat Struct Mol Biol ; 24(4): 379-386, 2017 04.
Article in English | MEDLINE | ID: mdl-28218748

ABSTRACT

Deposition of amyloid-ß plaques is increased in the brains of HIV-infected individuals, and the HIV transactivator of transcription (Tat) protein affects amyloidogenesis through several indirect mechanisms. Here, we investigated direct interactions between Tat and amyloid-ß peptide. Our in vitro studies showed that in the presence of Tat, uniform amyloid fibrils become double twisted fibrils and further form populations of thick unstructured filaments and aggregates. Specifically, Tat binding to the exterior surfaces of the Aß fibrils increases ß-sheet formation and lateral aggregation into thick multifibrillar structures, thus producing fibers with increased rigidity and mechanical resistance. Furthermore, Tat and Aß aggregates in complex synergistically induced neurotoxicity both in vitro and in animal models. Increased rigidity and mechanical resistance of the amyloid-ß-Tat complexes coupled with stronger adhesion due to the presence of Tat in the fibrils may account for increased damage, potentially through pore formation in membranes.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/toxicity , Amyloid/toxicity , Neurotoxins/toxicity , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/toxicity , Amyloid/chemistry , Amyloid beta-Peptides/metabolism , Animals , Cells, Cultured , Circular Dichroism , Fluorescent Antibody Technique , Humans , Mice, Transgenic , Microscopy, Atomic Force , Models, Biological , Neurons/drug effects , Neurons/metabolism , Neurotoxins/chemistry , Protein Aggregates/drug effects , Protein Binding/drug effects , Protein Structure, Secondary , Rats, Sprague-Dawley , tat Gene Products, Human Immunodeficiency Virus/metabolism
14.
Biochim Biophys Acta ; 1864(1): 29-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26497278

ABSTRACT

BACKGROUND: α1-Microglobulin (A1M) is a reductase and radical scavenger involved in physiological protection against oxidative damage. These functions were previously shown to be dependent upon cysteinyl-, C34, and lysyl side-chains, K(92, 118,130). A1M binds heme and the crystal structure suggests that C34 and H123 participate in a heme binding site. We have investigated the involvement of these five residues in the interactions with heme. METHODS: Four A1M-variants were expressed: with cysteine to serine substitution in position 34, lysine to threonine substitutions in positions (92, 118, 130), histidine to serine substitution in position 123 and a wt without mutations. Heme binding was investigated by tryptophan fluorescence quenching, UV-Vis spectrophotometry, circular dichroism, SPR, electrophoretic migration shift, gel filtration, catalase-like activity and molecular simulation. RESULTS: All A1M-variants bound to heme. Mutations in C34, H123 or K(92, 118, 130) resulted in significant absorbance changes, CD spectral changes, and catalase-like activity, suggesting involvement of these side-groups in coordination of the heme-iron. Molecular simulation support a model with two heme-binding sites in A1M involving the mutated residues. Binding of the first heme induces allosteric stabilization of the structure predisposing for a better fit of the second heme. CONCLUSIONS: The results suggest that one heme-binding site is located in the lipocalin pocket and a second binding site between loops 1 and 4. Reactions with the hemes involve the side-groups of C34, K(92, 118, 130) and H123. GENERAL SIGNIFICANCE: The model provides a structural basis for the functional activities of A1M: heme binding activity of A1M.


Subject(s)
Alpha-Globulins/chemistry , Heme/chemistry , Molecular Dynamics Simulation , Protein Structure, Tertiary , Alpha-Globulins/genetics , Alpha-Globulins/metabolism , Binding Sites/genetics , Blotting, Western , Circular Dichroism , Heme/metabolism , Humans , Mutagenesis, Site-Directed/methods , Mutation , Oxidation-Reduction , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Surface Plasmon Resonance
15.
J Biophys ; 2015: 686249, 2015.
Article in English | MEDLINE | ID: mdl-26491435

ABSTRACT

The method of lifespan extension that is a practical application of the informational theory of aging is proposed. In this theory, the degradation (error accumulation) of the genetic information in cells is considered a main cause of aging. According to it, our method is based on the transplantation of genetically identical (or similar) stem cells with the lower number of genomic errors to the old recipients. For humans and large mammals, this method can be realized by cryopreservation of their own stem cells, taken in a young age, for the later autologous transplantation in old age. To test this method experimentally, we chose laboratory animals of relatively short lifespan (mouse). Because it is difficult to isolate the required amount of the stem cells (e.g., bone marrow) without significant damage for animals, we used the bone marrow transplantation from sacrificed inbred young donors. It is shown that the lifespan extension of recipients depends on level of their genetic similarity (syngeneity) with donors. We have achieved the lifespan increase of the experimental mice by 34% when the transplantation of the bone marrow with high level of genetic similarity was used.

16.
Front Physiol ; 5: 465, 2014.
Article in English | MEDLINE | ID: mdl-25538624

ABSTRACT

BACKGROUND: Alpha-1-microglobulin (A1M), a small lipocalin protein found in plasma and tissues, has been identified as a heme and radical scavenger that may participate in the mitigation of toxicities caused by degradation of hemoglobin. The objective of this work was to investigate heme interactions with A1M in vitro using various analytical techniques and to optimize analytical methodology suitable for rapid evaluation of the ligand binding properties of recombinant A1M versions. METHODS: To examine heme binding properties of A1M we utilized UV/Vis absorption spectroscopy, visible circular dichroism (CD), catalase-like activity, migration shift electrophoresis, and surface plasmon resonance (SPR), which was specifically developed for the assessment of His-tagged A1M. RESULTS: The results of this study confirm that A1M is a heme binding protein that can accommodate heme at more than one binding site and/or in coordination with different amino acid residues depending upon heme concentration and ligand-to-protein molar ratio. UV/Vis titration of A1M with heme revealed an unusually large bathochromic shift, up to 38 nm, observed for heme binding to a primary binding site. UV/Vis spectroscopy, visible CD and catalase-like activity suggested that heme is accommodated inside His-tagged (tgA1M) and tagless A1M (ntA1M) in a rather similar fashion although the His-tag is very likely involved into coordination with iron of the heme molecule. SPR data indicated kinetic rate constants and equilibrium binding constants with KD values in a µM range. CONCLUSIONS: This study provided experimental evidence of the A1M heme binding properties by aid of different techniques and suggested an analytical methodology for a rapid evaluation of ligand-binding properties of recombinant A1M versions, also suitable for other His-tagged proteins.

17.
Biomaterials ; 35(24): 6182-94, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24831972

ABSTRACT

Carbon nanotubes (CNT) are one of the most promising nanomaterials for use in medicine. The blood biocompatibility of CNT is a critical safety issue. In the bloodstream, proteins bind to CNT through non-covalent interactions to form a protein corona, thereby largely defining the biological properties of the CNT. Here, we characterize the interactions of carboxylated-multiwalled carbon nanotubes (CNTCOOH) with common human proteins and investigate the effect of the different protein coronas on the interaction of CNTCOOH with human blood platelets (PLT). Molecular modeling and different photophysical techniques were employed to characterize the binding of albumin (HSA), fibrinogen (FBG), γ-globulins (IgG) and histone H1 (H1) on CNTCOOH. We found that the identity of protein forming the corona greatly affects the outcome of CNTCOOH's interaction with blood PLT. Bare CNTCOOH-induced PLT aggregation and the release of platelet membrane microparticles (PMP). HSA corona attenuated the PLT aggregating activity of CNTCOOH, while FBG caused the agglomeration of CNTCOOH nanomaterial, thereby diminishing the effect of CNTCOOH on PLT. In contrast, the IgG corona caused PLT fragmentation, and the H1 corona induced a strong PLT aggregation, thus potentiating the release of PMP.


Subject(s)
Blood Platelets/metabolism , Blood Proteins/chemistry , Blood Proteins/metabolism , Nanotubes, Carbon/chemistry , Animals , Blood Platelets/ultrastructure , Cattle , Circular Dichroism , Humans , L-Lactate Dehydrogenase/metabolism , Models, Molecular , Nanotubes, Carbon/ultrastructure , Platelet Activation , Protein Binding , Proteome/metabolism , Reactive Oxygen Species/metabolism , Surface Properties
18.
PLoS One ; 9(4): e94402, 2014.
Article in English | MEDLINE | ID: mdl-24718687

ABSTRACT

Oversulfated chondroitin sulfate (OSCS), a member of the glycosaminoglycan (GAG) family, was a contaminant in heparin that was linked to the 2008 heparin adverse events in the US. Because of its highly negative charge, OSCS can interact with many components of the contact and immune systems. We have previously demonstrated that OSCS inhibited the complement classical pathway by binding C1 inhibitor and potentiating its interaction with C1s. In the present study, by using surface plasmon resonance, we found OSCS interacts with T cell chemokines that can impact adaptive immunity. The binding of OSCS to stromal cell-derived factor-1 (SDF-1) chemokines, SDF-1α and SDF-1ß, caused a significant change in the secondary structures of these chemokines as detected by far-ultraviolet circular dichroism spectra analysis. Functionally, OSCS binding profoundly inhibited SDF-1-induced calcium mobilization and T cell chemotaxis. Imaging flow cytometry revealed T cell morphological changes mediated by SDF-1α were completely blocked by OSCS. We conclude that the OSCS, a past contaminant in heparin, has broad interactions with the components of the human immune system beyond the contact and complement systems, and that may explain, in part, prior OSCS-related adverse events, while suggesting potentially useful therapeutic applications for related GAGs in the control of inflammation.


Subject(s)
Chemokine CXCL12/metabolism , Chondroitin Sulfates/metabolism , Lymphocyte Activation/immunology , Signal Transduction , T-Lymphocytes/immunology , Calcium Signaling/drug effects , Cell Shape/drug effects , Chemokine CXCL12/chemistry , Chemotaxis/drug effects , Chondroitin Sulfates/pharmacology , Glycosaminoglycans/metabolism , Humans , Lymphocyte Activation/drug effects , Protein Structure, Secondary , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects
19.
J Biol Chem ; 288(30): 22033-41, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23754288

ABSTRACT

Low density lipoprotein receptor (LDLR) was shown to mediate clearance of blood coagulation factor VIII (FVIII) from the circulation. To elucidate the mechanism of interaction of LDLR and FVIII, our objective was to identify the region of the receptor necessary for binding FVIII. Using surface plasmon resonance, we found that LDLR exodomain and its cluster of complement-type repeats (CRs) bind FVIII in the same mode. This indicated that the LDLR site for FVIII is located within the LDLR cluster. Similar results were obtained for another ligand of LDLR, α-2-macroglobulin receptor-associated protein (RAP), a common ligand of receptors from the LDLR family. We further generated a set of recombinant fragments of the LDLR cluster and assessed their structural integrity by binding to RAP and by circular dichroism. A number of fragments overlapping CR.2-5 of the cluster were positive for binding RAP and FVIII. The specificity of these interactions was tested by site-directed mutagenesis of conserved tryptophans within the LDLR fragments. For FVIII, the specificity was also tested using a single-chain variable antibody fragment directed against the FVIII light chain as a competitor. Both cases resulted in decreased binding, thus confirming its specificity. The mutagenic study also showed an importance of the conserved tryptophans in LDLR for both ligands, and the competitive binding results showed an involvement of the light chain of FVIII in its interaction with LDLR. In conclusion, the region of CR.2-5 of LDLR was defined as the binding site for FVIII and RAP.


Subject(s)
Factor VIII/metabolism , LDL-Receptor Related Protein-Associated Protein/metabolism , Protein Interaction Mapping/methods , Receptors, LDL/metabolism , Amino Acid Sequence , Binding Sites/genetics , Binding, Competitive , Circular Dichroism , Factor VIII/chemistry , Factor VIII/genetics , Humans , Kinetics , LDL-Receptor Related Protein-Associated Protein/chemistry , LDL-Receptor Related Protein-Associated Protein/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Receptors, LDL/chemistry , Receptors, LDL/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Surface Plasmon Resonance
20.
Phys Chem Chem Phys ; 15(30): 12558-71, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23793354

ABSTRACT

Human amylin-derived oligomers and aggregates are believed to play an important role in the pathogenesis of type II diabetes mellitus (T2DM). In addition to amylin-evoked cell attrition, T2DM is often accompanied by elevated serum copper levels. Although previous studies have shown that human amylin, in the course of its aggregation, produces hydrogen peroxide (H2O2) in solution, and that this process is exacerbated in the presence of copper(ii) ions (Cu(2+)), very little is known about the mechanism of interaction between Cu(2+) and amylin in pancreatic ß-cells, including its pathological significance. Hence, in this study we investigated the mechanism by which Cu(2+) and human amylin catalyze formation of reactive oxygen species (ROS) in cells and in vitro, and examined the modulatory effect of Cu(2+) on amylin aggregation and toxicity in pancreatic rat insulinoma (RIN-m5F) ß-cells. Our results indicate that Cu(2+) interacts with human and rat amylin to form metalo-peptide complexes with low aggregative and oxidative properties. Human and non-amyloidogenic rat amylin produced minute (nM) amounts of H2O2, the accumulation of which was slightly enhanced in the presence of Cu(2+). In a marked contrast to human and rat amylin, and in the presence of the reducing agents glutathione and ascorbate, Cu(2+) produced µM concentrations of H2O2 surpassing the amylin effect by several fold. The current study shows that human and rat amylin not only produce but also quench H2O2, and that human but not rat amylin significantly decreases the amount of H2O2 in solution produced by Cu(2+) and glutathione. Similarly, human amylin was found to also decrease hydroxyl radical formation elicited by Cu(2+) and glutathione. Furthermore, Cu(2+) mitigated the toxic effect of human amylin by inhibiting activation of pro-apoptotic caspase-3 and stress-kinase signaling pathways in rat pancreatic insulinoma cells in part by stabilizing human amylin in its native conformational state. This sacrificial quenching of metal-catalyzed ROS by human amylin and copper's anti-aggregative and anti-apoptotic properties suggest a novel and protective role for the copper-amylin complex.


Subject(s)
Copper/chemistry , Islet Amyloid Polypeptide/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Circular Dichroism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Glutathione/chemistry , Humans , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Hydroxyl Radical/chemistry , Hydroxyl Radical/metabolism , Hydroxyl Radical/toxicity , Ions/chemistry , Islet Amyloid Polypeptide/metabolism , Oxidative Stress/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...