Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Theriogenology ; 231: 1-10, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39378727

ABSTRACT

Numerous studies have shown that an improper diet in parents has a negative impact on offspring's health. Furthermore, the negative effects of trans fatty acids (TFA) in maternal diets on fertility and health and their impact on future generations have been documented. However, there is limited research on the negative effects of TFA in paternal diets on male children. The current work used qRT-PCR to investigate the effects of trans fatty acids and vitamin E in the paternal diet on the expression pattern of androgen signaling pathway genes such as STAR, CYP11a1, HSD3B, SRD5a2, and SCARB1 in offspring testes. In this experiment, parental rats were randomly separated into four groups, each with ten father rats, and were fed for eight weeks (60 days) as follows. 1: Standard diet group plus liquid sunflower oil (control). 2: Standard diet group containing trans fatty acids (CTH). 3: The regular diet group received 2.5 times the recommended quantity of vitamin E supplement. 4: Standard diet group with vitamin E and trans fatty acid supplementation (ETH). The testis tissue samples from 35 offspring were then used. Following RNA extraction from tissues and cDNA synthesis, quantitative real-time PCR was used to evaluate the expression levels of androgen signaling pathway genes such as STAR, CYP11A1, HSD3B, SCARB1, and SRD5A2. Our findings showed that the expression of CYP11A1 was considerably reduced in the progeny of paternal rats given ETH compared to the CTH group. The expression levels of the STAR gene were significantly lower in the progeny of paternal rats administered TFA, ETH, and vitamin E compared to the controls. Although the CTH group had lower SCARB1 expression than the other groups, the difference was not statistically significant. Paternal vitamin E consumption substantially affected SRD5A2 expression when compared to offspring of paternal rats fed vitamin E + trans fatty acid or those fed a conventional diet containing trans fatty acid. Furthermore, the vitamin E group showed a statistically significant increase in HSD3B expression compared to the other groups. Bioinformatics analyses, such as protein-protein interaction networks and gene ontology term enrichment, revealed that these genes play roles in lipid biosynthesis, hormone metabolism, male sex differentiation, reproductive development, and steroid biosynthesis. Our data indicate that paternal trans fatty acid consumption influences the expression of particular androgen signaling pathway genes in offspring testis, with vitamin E potentially mitigating some of these effects.

2.
BMC Genomics ; 25(1): 583, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858625

ABSTRACT

BACKGROUND: The issue of male fertility is becoming increasingly common due to genetic differences inherited over generations. Gene expression and evaluation of non-coding RNA (ncRNA), crucial for sperm development, are significant factors. This gene expression can affect sperm motility and, consequently, fertility. Understanding the intricate protein interactions that play essential roles in sperm differentiation and development is vital. This knowledge could lead to more effective treatments and interventions for male infertility. MATERIALS AND METHODS: Our research aim to identify new and key genes and ncRNA involved in non-obstructive azoospermia (NOA), improving genetic diagnosis and offering more accurate estimates for successful sperm extraction based on an individual's genotype. RESULTS: We analyzed the transcript of three NOA patients who tested negative for genetic sperm issues, employing comprehensive genome-wide analysis of approximately 50,000 transcript sequences using microarray technology. This compared gene expression profiles between NOA sperm and normal sperm. We found significant gene expression differences: 150 genes were up-regulated, and 78 genes were down-regulated, along with 24 ncRNAs up-regulated and 13 ncRNAs down-regulated compared to normal conditions. By cross-referencing our results with a single-cell genomics database, we identified overexpressed biological process terms in differentially expressed genes, such as "protein localization to endosomes" and "xenobiotic transport." Overrepresented molecular function terms in up-regulated genes included "voltage-gated calcium channel activity," "growth hormone-releasing hormone receptor activity," and "sialic acid transmembrane transporter activity." Analysis revealed nine hub genes associated with NOA sperm: RPL34, CYB5B, GOL6A6, LSM1, ARL4A, DHX57, STARD9, HSP90B1, and VPS36. CONCLUSIONS: These genes and their interacting proteins may play a role in the pathophysiology of germ cell abnormalities and infertility.


Subject(s)
Azoospermia , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs , RNA, Long Noncoding , RNA, Messenger , Single-Cell Analysis , Spermatozoa , Humans , Male , Azoospermia/genetics , Azoospermia/metabolism , Spermatozoa/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Transcriptome , Oligonucleotide Array Sequence Analysis
3.
Cell Reprogram ; 24(4): 165-174, 2022 08.
Article in English | MEDLINE | ID: mdl-35749708

ABSTRACT

The vimentin (encoded by VIM) is one of the 70 human intermediate filaments (IFs), building highly dynamic and cell-type-specific web networks in the cytoplasm. Vim-/- mice exhibit process defects associated with cell differentiation, which can have implications for understanding cancer and disease. This review showed recent reports from studies that unveiled vimentin intermediate filaments (VIFs) as an essential component of the cytoskeleton, followed by a description of vimentin's physiological functions and process reports in VIF signaling pathway and gene network studies. The main focus of the discussion is on vital signaling pathways associated with how VIF coordinates invasion cells and migration. The current research will open up multiple processes to research the function of VIF and other IF proteins in cellular and molecular biology, and they will lead to essential insights into different VIF levels for the invasive metastatic cancer cells. Enrich GO databases used Gene Ontology and Pathway Enrichment Analysis. Estimation with STRING online was to predict the functional and molecular interactions of proteins-protein with Cytoscape analysis to search and select the master genes. Using Cytoscape and STRING analysis, we presented eight genes, RhoA, Smad3, Akt1, Cdk2, Rock1, Rock2, Mapk1, and Mapk8, as the essential protein-protein interaction with vimentin involved in the invasion.


Subject(s)
Cytoskeleton , Intermediate Filaments , Animals , Cytoplasm/metabolism , Cytoskeleton/metabolism , Humans , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Mice , Signal Transduction , Vimentin/genetics , Vimentin/metabolism , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL