Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38659895

ABSTRACT

N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are also increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating that urine and plasma Lac-Phe pools are functionally and biochemically de-coupled. Together, these data establish SLC17 family members as the physiologic urine transporters for Lac-Phe and uncover a biochemical pathway for the renal excretion of this signaling metabolite.

2.
Nat Genet ; 55(6): 995-1008, 2023 06.
Article in English | MEDLINE | ID: mdl-37277652

ABSTRACT

The kidneys operate at the interface of plasma and urine by clearing molecular waste products while retaining valuable solutes. Genetic studies of paired plasma and urine metabolomes may identify underlying processes. We conducted genome-wide studies of 1,916 plasma and urine metabolites and detected 1,299 significant associations. Associations with 40% of implicated metabolites would have been missed by studying plasma alone. We detected urine-specific findings that provide information about metabolite reabsorption in the kidney, such as aquaporin (AQP)-7-mediated glycerol transport, and different metabolomic footprints of kidney-expressed proteins in plasma and urine that are consistent with their localization and function, including the transporters NaDC3 (SLC13A3) and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite-disease combinations represent a resource to better understand metabolic diseases and revealed connections of dipeptidase 1 with circulating digestive enzymes and with hypertension. Extending genetic studies of the metabolome beyond plasma yields unique insights into processes at the interface of body compartments.


Subject(s)
Kidney , Metabolome , Kidney/metabolism , Metabolomics
3.
Metabolites ; 12(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35050183

ABSTRACT

Metabolites are small products of metabolism that provide a snapshot of the wellbeing of an organism and the mechanisms that control key physiological processes involved in health and disease. Here we report the results of a genome-wide association study of 722 circulating metabolite levels in 8809 subjects of European origin, providing both breadth and depth. These analyses identified 202 unique genomic regions whose variations are associated with the circulating levels of 478 different metabolites. Replication with a subset of 208 metabolites that were available in an independent dataset for a cohort of 1768 European subjects confirmed the robust associations, including 74 novel genomic regions not associated with any metabolites in previous works. This study enhances our knowledge of genetic mechanisms controlling human metabolism. Our findings have major potential for identifying novel targets and developing new therapeutic strategies.

4.
J Am Soc Nephrol ; 32(9): 2315-2329, 2021 09.
Article in English | MEDLINE | ID: mdl-34140400

ABSTRACT

BACKGROUND: Polypharmacy is common among patients with CKD, but little is known about the urinary excretion of many drugs and their metabolites among patients with CKD. METHODS: To evaluate self-reported medication use in relation to urine drug metabolite levels in a large cohort of patients with CKD, the German Chronic Kidney Disease study, we ascertained self-reported use of 158 substances and 41 medication groups, and coded active ingredients according to the Anatomical Therapeutic Chemical Classification System. We used a nontargeted mass spectrometry-based approach to quantify metabolites in urine; calculated specificity, sensitivity, and accuracy of medication use and corresponding metabolite measurements; and used multivariable regression models to evaluate associations and prescription patterns. RESULTS: Among 4885 participants, there were 108 medication-drug metabolite pairs on the basis of reported medication use and 78 drug metabolites. Accuracy was excellent for measurements of 36 individual substances in which the unchanged drug was measured in urine (median, 98.5%; range, 61.1%-100%). For 66 pairs of substances and their related drug metabolites, median measurement-based specificity and sensitivity were 99.2% (range, 84.0%-100%) and 71.7% (range, 1.2%-100%), respectively. Commonly prescribed medications for hypertension and cardiovascular risk reduction-including angiotensin II receptor blockers, calcium channel blockers, and metoprolol-showed high sensitivity and specificity. Although self-reported use of prescribed analgesics (acetaminophen, ibuprofen) was <3% each, drug metabolite levels indicated higher usage (acetaminophen, 10%-26%; ibuprofen, 10%-18%). CONCLUSIONS: This comprehensive screen of associations between urine drug metabolite levels and self-reported medication use supports the use of pharmacometabolomics to assess medication adherence and prescription patterns in persons with CKD, and indicates under-reported use of medications available over the counter, such as analgesics.


Subject(s)
Medication Adherence , Pharmaceutical Preparations/urine , Polypharmacy , Renal Insufficiency, Chronic/urine , Self Report , Aged , Cohort Studies , Female , Germany , Humans , Male , Mass Spectrometry , Middle Aged , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Sensitivity and Specificity , Urine/chemistry
5.
Sci Rep ; 10(1): 16353, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004997

ABSTRACT

The influence of maternal high-fat diet (HFD) on metabolic response to ozone was examined in Long-Evans rat offspring. F0 females were fed control diet (CD; 10%kcal from fat) or HFD (60%kcal from fat) starting at post-natal day (PND) 30. Rats were bred on PND 72. Dietary regimen was maintained until PND 30 when all offspring were switched to CD. On PND 40, F1 offspring (n = 10/group/sex) were exposed to air or 0.8 ppm ozone for 5 h. Serum samples were collected for global metabolomic analysis (n = 8/group/sex). Offspring from HFD dams had increased body fat and weight relative to CD. Metabolomic analysis revealed significant sex-, diet-, and exposure-related changes. Maternal HFD increased free fatty acids and decreased phospholipids (male > female) in air-exposed rats. Microbiome-associated histidine and tyrosine metabolites were increased in both sexes, while 1,5-anhydroglucitol levels decreased in males indicating susceptibility to insulin resistance. Ozone decreased monohydroxy fatty acids and acyl carnitines and increased pyruvate along with TCA cycle intermediates in females (HFD > CD). Ozone increased various amino acids, polyamines, and metabolites of gut microbiota in HFD female offspring indicating gut microbiome alterations. Collectively, these data suggest that maternal HFD increases offspring susceptibility to metabolic alterations in a sex-specific manner when challenged with environmental stressors.


Subject(s)
Diet, High-Fat , Maternal Nutritional Physiological Phenomena/physiology , Ozone/administration & dosage , Prenatal Exposure Delayed Effects/metabolism , Stress, Physiological/physiology , Animals , Fatty Acids, Nonesterified/blood , Female , Gastrointestinal Microbiome , Male , Metabolomics , Phospholipids/blood , Pregnancy , Rats , Rats, Long-Evans , Sex Factors
6.
iScience ; 23(10): 101630, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33103072

ABSTRACT

Understanding the mechanisms for cellular aging is a fundamental question in biology. Normal red blood cells (RBCs) survive for approximately 100 days, and their survival is likely limited by functional decline secondary to cumulative damage to cell constituents, which may be reflected in altered metabolic capabilities. To investigate metabolic changes during in vivo RBC aging, labeled cell populations were purified at intervals and assessed for abundance of metabolic intermediates using mass spectrometry. A total of 167 metabolites were profiled and quantified from cell populations of defined ages. Older RBCs maintained ATP and redox charge states at the cost of altered activity of enzymatic pathways. Time-dependent changes were identified in metabolites related to maintenance of the redox state and membrane structure. These findings illuminate the differential metabolic pathway usage associated with normal cellular aging and identify potential biomarkers to determine average RBC age and rates of RBC turnover from a single blood sample.

7.
Nat Commun ; 10(1): 4358, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554818

ABSTRACT

Systemic metabolic alterations associated with increased consumption of saturated fat and obesity are linked with increased risk of prostate cancer progression and mortality, but the molecular underpinnings of this association are poorly understood. Here, we demonstrate in a murine prostate cancer model, that high-fat diet (HFD) enhances the MYC transcriptional program through metabolic alterations that favour histone H4K20 hypomethylation at the promoter regions of MYC regulated genes, leading to increased cellular proliferation and tumour burden. Saturated fat intake (SFI) is also associated with an enhanced MYC transcriptional signature in prostate cancer patients. The SFI-induced MYC signature independently predicts prostate cancer progression and death. Finally, switching from a high-fat to a low-fat diet, attenuates the MYC transcriptional program in mice. Our findings suggest that in primary prostate cancer, dietary SFI contributes to tumour progression by mimicking MYC over expression, setting the stage for therapeutic approaches involving changes to the diet.


Subject(s)
Diet, High-Fat/adverse effects , Gene Expression Regulation, Neoplastic/drug effects , Metabolome/drug effects , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Aged , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Progression , Humans , Male , Mice, Transgenic , Middle Aged , Prostatic Neoplasms/etiology , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics
8.
PLoS One ; 14(8): e0221633, 2019.
Article in English | MEDLINE | ID: mdl-31454377

ABSTRACT

Ozone is an asthma trigger. In mice, the gut microbiome contributes to ozone-induced airway hyperresponsiveness, a defining feature of asthma, but the mechanistic basis for the role of the gut microbiome has not been established. Gut bacteria can affect the function of distal organs by generating metabolites that enter the blood and circulate systemically. We hypothesized that global metabolomic profiling of serum collected from ozone exposed mice could be used to identify metabolites contributing to the role of the microbiome in ozone-induced airway hyperresponsiveness. Mice were treated for two weeks with a cocktail of antibiotics (ampicillin, neomycin, metronidazole, and vancomycin) in the drinking water or with control water and then exposed to air or ozone (2 ppm for 3 hours). Twenty four hours later, blood was harvested and serum analyzed via liquid-chromatography or gas-chromatography coupled to mass spectrometry. Antibiotic treatment significantly affected 228 of the 562 biochemicals identified, including reductions in the known bacterially-derived metabolites, equol, indole propionate, 3-indoxyl sulfate, and 3-(4-hydroxyphenyl)propionate, confirming the efficacy of the antibiotic treatment. Ozone exposure caused significant changes in 334 metabolites. Importantly, ozone-induced changes in many of these metabolites were different in control and antibiotic-treated mice. For example, most medium and long chain fatty acids declined by 20-50% with ozone exposure in antibiotic-treated but not control mice. Most taurine-conjugated bile acids increased with ozone exposure in antibiotic-treated but not control mice. Ozone also caused marked (9-fold and 5-fold) increases in the polyamines, spermine and spermidine, respectively, in control but not antibiotic-treated mice. Each of these metabolites has the capacity to alter airway responsiveness and may account for the role of the microbiome in pulmonary responses to ozone.


Subject(s)
Metabolome , Microbiota , Ozone/adverse effects , Serum/metabolism , Air , Amino Acids/blood , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Bile Acids and Salts/biosynthesis , Corticosterone/blood , Glutathione/blood , Hormones/metabolism , Lipids/blood , Liver/metabolism , Metabolic Networks and Pathways , Metabolome/drug effects , Mice, Inbred C57BL , Microbiota/drug effects , Polyamines/blood , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thyroxine/blood
9.
Toxicol Sci ; 163(2): 430-439, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29471466

ABSTRACT

Controlled human exposure to the oxidant air pollutant ozone causes decrements in lung function and increased inflammation as evidenced by neutrophil influx into the lung and increased levels of proinflammatory cytokines in the airways. Here we describe a targeted metabolomics evaluation of human bronchoalveolar lavage fluid (BALF) following controlled in vivo exposure to ozone to gain greater insight into its pulmonary effects. In a 2-arm cross-over study, each healthy adult human volunteer was randomly exposed to filtered air (FA) and to 0.3 ppm ozone for 2 h while undergoing intermittent exercise with a minimum of 4 weeks between exposures. Bronchoscopy was performed and BALF obtained at 1 (n = 9) or 24 (n = 23) h postexposure. Metabolites were detected using ultrahigh performance liquid chromatography-tandem mass spectroscopy. At 1-h postexposure, a total of 28 metabolites were differentially expressed (DE) (p < .05) following ozone exposure compared with FA-exposure. These changes were associated with increased glycolysis and antioxidant responses, suggesting rapid increased energy utilization as part of the cellular response to oxidative stress. At 24-h postexposure, 41 metabolites were DE. Many of the changes were in amino acids and linked with enhanced proteolysis. Changes associated with increased lipid membrane turnover were also observed. These later-stage changes were consistent with ongoing repair of airway tissues. There were 1.37 times as many metabolites were differentially expressed at 24 h compared with 1-h postexposure. The changes at 1 h reflect responses to oxidative stress while the changes at 24 h indicate a broader set of responses consistent with tissue repair. These results illustrate the ability of metabolomic analysis to identify mechanistic features of ozone toxicity and aspects of the subsequent tissue response.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Lung/drug effects , Lung/metabolism , Oxidative Stress/drug effects , Ozone/toxicity , Pneumonia/chemically induced , Adult , Amino Acids/metabolism , Cross-Over Studies , Fatty Acids/metabolism , Healthy Volunteers , Humans , Inflammation , Inhalation Exposure/adverse effects , Lung/immunology , Metabolomics , Pneumonia/immunology , Pneumonia/metabolism , Tandem Mass Spectrometry
10.
Cancer Res ; 78(1): 36-50, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29097607

ABSTRACT

Hotspot mutations in the isocitrate dehydrogenase 1 (IDH1) gene occur in a number of human cancers and confer a neomorphic enzyme activity that catalyzes the conversion of α-ketoglutarate (αKG) to the oncometabolite D-(2)-hydroxyglutarate (D2HG). In malignant gliomas, IDH1R132H expression induces widespread metabolic reprogramming, possibly requiring compensatory mechanisms to sustain the normal biosynthetic requirements of actively proliferating tumor cells. We used genetically engineered mouse models of glioma and quantitative metabolomics to investigate IDH1R132H-dependent metabolic reprogramming and its potential to induce biosynthetic liabilities that can be exploited for glioma therapy. In gliomagenic neural progenitor cells, IDH1R132H expression increased the abundance of dipeptide metabolites, depleted key tricarboxylic acid cycle metabolites, and slowed progression of murine gliomas. Notably, expression of glutamate dehydrogenase GDH2, a hominoid-specific enzyme with relatively restricted expression to the brain, was critically involved in compensating for IDH1R132H-induced metabolic alterations and promoting IDH1R132H glioma growth. Indeed, we found that recently evolved amino acid substitutions in the GDH2 allosteric domain conferred its nonredundant, glioma-promoting properties in the presence of IDH1 mutation. Our results indicate that among the unique roles for GDH2 in the human forebrain is its ability to limit IDH1R132H-mediated metabolic liabilities, thus promoting glioma growth in this context. Results from this study raise the possibility that GDH2-specific inhibition may be a viable therapeutic strategy for gliomas with IDH mutations.Significance: These findings show that the homonid-specific brain enzyme GDH2 may be essential to mitigate metabolic liabilities created by IDH1 mutations in glioma, with possible implications to leverage its therapeutic management by IDH1 inhibitors. Cancer Res; 78(1); 36-50. ©2017 AACR.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Glutamate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Evolution, Molecular , Gene Expression Regulation, Neoplastic , Gene Knock-In Techniques , Glioma/metabolism , Glioma/mortality , Glioma/pathology , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/genetics , Humans , Isocitrate Dehydrogenase/genetics , Male , Mice, Inbred NOD , Mice, Inbred Strains , Mutagenesis, Site-Directed , Prosencephalon/embryology , Protein Domains , Transgenes
11.
Oncotarget ; 8(41): 70366-70377, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-29050286

ABSTRACT

Malignant glioma is one of the most lethal adult cancers, yet its etiology remains largely unknown. We conducted a prospective serum metabolomic analysis of glioma based on 64 cases and 64 matched controls selected from Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Median time from collection of baseline fasting serum to diagnosis was nine years (inter-decile range 3-20 years). LC/MS-MS identified 730 known metabolites, and conditional logistic regression models estimated odds ratios for one-standard deviation differences in log-metabolite signals. Forty-three metabolites were associated with glioma at P<0.05. 2-Oxoarginine, cysteine, alpha-ketoglutarate, chenodeoxycholate and argininate yielded the strongest metabolite signals and were inversely related to overall glioma risk (0.0065≤P<0.0083). Also, seven xanthine metabolites related to caffeine metabolism were higher in cases than in controls (0.017≤P<0.042). Findings were mostly similar in high-grade glioma cases, although prominent inversely associated metabolites included the secondary bile acids glycocholenate sulfate and 3ß-hydroxy-5-cholenoic acid, xenobiotic methyl 4-hydroxybenzoate sulfate, sex steroid 5alpha-pregnan-3beta, 20beta-diol-monosulfate, and cofactor/vitamin oxalate (0.0091≤P<0.021). A serum metabolomic profile of glioma identified years in advance of clinical diagnoses is characterized by altered signals in arginine/proline, antioxidant, and coffee-related metabolites. The observed pattern provides new potential leads regarding the molecular basis relevant to etiologic or sub-clinical biomarkers for glioma.

12.
PLoS One ; 12(7): e0181017, 2017.
Article in English | MEDLINE | ID: mdl-28704544

ABSTRACT

Pulmonary responses to the air pollutant, ozone, are increased in obesity. Both obesity and ozone cause changes in systemic metabolism. Consequently, we examined the impact of ozone on the lung metabolomes of obese and lean mice. Lean wildtype and obese db/db mice were exposed to acute ozone (2 ppm for 3 h) or air. 24 hours later, the lungs were excised, flushed with PBS to remove blood and analyzed via liquid-chromatography or gas-chromatography coupled to mass spectrometry for metabolites. Both obesity and ozone caused changes in the lung metabolome. Of 321 compounds identified, 101 were significantly impacted by obesity in air-exposed mice. These included biochemicals related to carbohydrate and lipid metabolism, which were each increased in lungs of obese versus lean mice. These metabolite changes may be of functional importance given the signaling capacity of these moieties. Ozone differentially affected the lung metabolome in obese versus lean mice. For example, almost all phosphocholine-containing lysolipids were significantly reduced in lean mice, but this effect was attenuated in obese mice. Glutathione metabolism was also differentially affected by ozone in obese and lean mice. Finally, the lung metabolome indicated a role for the microbiome in the effects of both obesity and ozone: all measured bacterial/mammalian co-metabolites were significantly affected by obesity and/or ozone. Thus, metabolic derangements in obesity appear to impact the response to ozone.


Subject(s)
Lung/metabolism , Metabolome/drug effects , Obesity/metabolism , Ozone/toxicity , Animals , Carbohydrate Metabolism , Gas Chromatography-Mass Spectrometry , Lipid Metabolism/drug effects , Lung/drug effects , Mice , Mice, Obese , Obesity/complications
13.
Oncotarget ; 8(28): 45190-45199, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28423352

ABSTRACT

Two recent investigations found serum lipid and energy metabolites related to aggressive prostate cancer up to 20 years prior to diagnosis. To elucidate whether those metabolomic profiles represent etiologic or tumor biomarker signals, we prospectively examined serum metabolites of prostate cancer cases by size and extent of primary tumors in a nested case-control analysis in the ATBC Study cohort that compared cases diagnosed with T2 (n = 71), T3 (n = 51), or T4 (n = 15) disease to controls (n = 200). Time from fasting serum collection to diagnosis averaged 10 years (range 1-20). LC/MS-GC/MS identified 625 known compounds, and logistic regression estimated odds ratios (ORs) associated with one-standard deviation differences in log-metabolites. N-acetyl-3-methylhistidine, 3-methylhistidine and 2'-deoxyuridine were elevated in men with T2 cancers compared to controls (ORs = 1.38-1.79; 0.0002 ≤ p ≤ 0.01). By contrast, four lipid metabolites were inversely associated with T3 tumors: oleoyl-linoleoyl-glycerophosphoinositol (GPI), palmitoyl-linoleoyl-GPI, cholate, and inositol 1-phosphate (ORs = 0.49-0.60; 0.000017 ≤ p ≤ 0.003). Secondary bile acid lipids, sex steroids and caffeine-related xanthine metabolites were elevated, while two Krebs cycle metabolites were decreased, in men diagnosed with T4 cancers. Men with T2, T3, and T4 prostate cancer primaries exhibit qualitatively different metabolite profiles years in advance of diagnosis that may represent etiologic factors, molecular patterns reflective of distinct primary tumors, or a combination of both.


Subject(s)
Biomarkers, Tumor/blood , Prostatic Neoplasms/blood , Humans , Male , Metabolomics/methods , Middle Aged , Prospective Studies , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology
14.
Sci Rep ; 6: 38489, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27924925

ABSTRACT

Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.


Subject(s)
Cellular Senescence , Fibroblasts/cytology , Fibroblasts/metabolism , Intracellular Space/metabolism , Metabolome , Metabolomics , NAD/metabolism , Niacinamide/metabolism , Cell Cycle , Cell Proliferation , Cells, Cultured , Cluster Analysis , Homeostasis , Humans , Models, Biological , Oxidation-Reduction , Principal Component Analysis , Tryptophan/metabolism
15.
PLoS Med ; 13(11): e1002179, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27898682

ABSTRACT

BACKGROUND: Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. METHODS AND FINDINGS: Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. CONCLUSIONS: Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Genetic Predisposition to Disease , Mendelian Randomization Analysis , Adult , Aged , Diabetes Mellitus, Type 2/metabolism , Genome-Wide Association Study , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Sweden , Young Adult
16.
J Nutr Metab ; 2016: 6158436, 2016.
Article in English | MEDLINE | ID: mdl-27840740

ABSTRACT

Background. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, a randomized controlled cancer prevention trial, showed a 32% reduction in prostate cancer incidence in response to vitamin E supplementation. Two other trials were not confirmatory, however. Objective. We compared the change in serum metabolome of the ATBC Study participants randomized to receive vitamin E to those who were not by randomly selecting 50 men from each of the intervention groups (50 mg/day all-rac-α-tocopheryl acetate (ATA), 20 mg/day ß-carotene, both, placebo). Methods. Metabolomic profiling was conducted on baseline and follow-up fasting serum (Metabolon, Inc.). Results. After correction for multiple comparisons, five metabolites were statistically significantly altered (ß is the change in metabolite level expressed as number of standard deviations on the log scale): α-CEHC sulfate (ß = 1.51, p = 1.45 × 10-38), α-CEHC glucuronide (ß = 1.41, p = 1.02 × 10-31), α-tocopherol (ß = 0.97, p = 2.22 × 10-13), γ-tocopherol (ß = -0.90, p = 1.76 × 10-11), and ß-tocopherol (ß = -0.73, p = 9.40 × 10-8). Glutarylcarnitine, beta-alanine, ornithine, and N6-acetyllysine were also decreased by ATA supplementation (ß range 0.40 to -0.36), but not statistically significantly. Conclusions. Comparison of the observed metabolite alterations resulting from ATA supplementation to those in other vitamin E trials of different populations, dosages, or formulations may shed light on the apparently discordant vitamin E-prostate cancer risk findings.

17.
Cancer Prev Res (Phila) ; 9(9): 721-31, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27432344

ABSTRACT

Treatment with celecoxib, a selective COX-2 inhibitor, reduces formation of premalignant adenomatous polyps in the gastrointestinal tracts of humans and mice. In addition to its chemopreventive activity, celecoxib can exhibit antimicrobial activity. Differing bacterial profiles have been found in feces from colon cancer patients compared with those of normal subjects. Moreover, preclinical studies suggest that bacteria can modulate intestinal tumorigenesis by secreting specific metabolites. In the current study, we determined whether celecoxib treatment altered the luminal microbiota and metabolome in association with reducing intestinal polyp burden in mice. Administration of celecoxib for 10 weeks markedly reduced intestinal polyp burden in APC(Min/+) mice. Treatment with celecoxib also altered select luminal bacterial populations in both APC(Min/+) and wild-type mice, including decreased Lactobacillaceae and Bifidobacteriaceae as well as increased Coriobacteriaceae Metabolomic analysis demonstrated that celecoxib caused a strong reduction in many fecal metabolites linked to carcinogenesis, including glucose, amino acids, nucleotides, and lipids. Ingenuity Pathway Analysis suggested that these changes in metabolites may contribute to reduced cell proliferation. To this end, we showed that celecoxib reduced cell proliferation in the base of normal appearing ileal and colonic crypts of APC(Min/+) mice. Consistent with this finding, lineage tracing indicated that celecoxib treatment reduced the rate at which Lgr5-positive stem cells gave rise to differentiated cell types in the crypts. Taken together, these results demonstrate that celecoxib alters the luminal microbiota and metabolome along with reducing epithelial cell proliferation in mice. We hypothesize that these actions contribute to its chemopreventive activity. Cancer Prev Res; 9(9); 721-31. ©2016 AACR.


Subject(s)
Celecoxib/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Gastrointestinal Microbiome/drug effects , Intestinal Polyps/pathology , Metabolome/drug effects , Animals , Cell Proliferation/drug effects , Feces/chemistry , Feces/microbiology , Male , Mice
18.
Am J Respir Crit Care Med ; 193(12): 1382-91, 2016 06 15.
Article in English | MEDLINE | ID: mdl-26745856

ABSTRACT

RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and glucose intolerance that are associated with global changes in peripheral glucose, lipid, and amino acid metabolism. OBJECTIVES: To examine ozone-induced metabolic derangement in humans using serum metabolomic assessment, establish human-to-rodent coherence, and identify novel nonprotein biomarkers. METHODS: Serum samples were obtained from a crossover clinical study that included two clinic visits (n = 24 each) where each subject was blindly exposed in the morning to either filtered air or 0.3 parts per million ozone for 2 hours during 15-minute on-off exercise. Serum samples collected within 1 hour after exposure were assessed for changes in metabolites using a metabolomic approach. MEASUREMENTS AND MAIN RESULTS: Metabolomic analysis revealed that ozone exposure markedly increased serum cortisol and corticosterone together with increases in monoacylglycerol, glycerol, and medium- and long-chain free fatty acids, reflective of lipid mobilization and catabolism. Additionally, ozone exposure increased serum lysolipids, potentially originating from membrane lipid breakdown. Ozone exposure also increased circulating mitochondrial ß-oxidation-derived metabolites, such as acylcarnitines, together with increases in the ketone body 3-hydroxybutyrate. These changes suggested saturation of ß-oxidation by ozone in exercising humans. CONCLUSIONS: As in rodents, acute ozone exposure increased stress hormones and globally altered peripheral lipid metabolism in humans, likely through activation of a neurohormonally mediated stress response pathway. The metabolomic assessment revealed new biomarkers and allowed for establishment of rodent-to-human coherence. Clinical trial registered with www.clinicaltrials.gov (NCT 01492517).


Subject(s)
Corticosterone/blood , Hydrocortisone/blood , Lipid Metabolism , Lipids/blood , Ozone/blood , Ozone/pharmacology , Adult , Biomarkers/blood , Cross-Over Studies , Fatty Acids, Nonesterified/blood , Female , Glycerol/blood , Humans , Male , Metabolomics/methods , Monoglycerides/blood , Young Adult
19.
J Am Soc Nephrol ; 27(2): 626-36, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26047788

ABSTRACT

Noninvasive diagnosis and prognostication of acute cellular rejection in the kidney allograft may help realize the full benefits of kidney transplantation. To investigate whether urine metabolites predict kidney allograft status, we determined levels of 749 metabolites in 1516 urine samples from 241 kidney graft recipients enrolled in the prospective multicenter Clinical Trials in Organ Transplantation-04 study. A metabolite signature of the ratio of 3-sialyllactose to xanthosine in biopsy specimen-matched urine supernatants best discriminated acute cellular rejection biopsy specimens from specimens without rejection. For clinical application, we developed a high-throughput mass spectrometry-based assay that enabled absolute and rapid quantification of the 3-sialyllactose-to-xanthosine ratio in urine samples. A composite signature of ratios of 3-sialyllactose to xanthosine and quinolinate to X-16397 and our previously reported urinary cell mRNA signature of 18S ribosomal RNA, CD3ε mRNA, and interferon-inducible protein-10 mRNA outperformed the metabolite signatures and the mRNA signature. The area under the receiver operating characteristics curve for the composite metabolite-mRNA signature was 0.93, and the signature was diagnostic of acute cellular rejection with a specificity of 84% and a sensitivity of 90%. The composite signature, developed using solely biopsy specimen-matched urine samples, predicted future acute cellular rejection when applied to pristine samples taken days to weeks before biopsy. We conclude that metabolite profiling of urine offers a noninvasive means of diagnosing and prognosticating acute cellular rejection in the human kidney allograft, and that the combined metabolite and mRNA signature is diagnostic and prognostic of acute cellular rejection with very high accuracy.


Subject(s)
Allografts/metabolism , Graft Rejection/urine , Kidney Transplantation , Kidney/metabolism , Acute Disease , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Graft Rejection/metabolism , Humans , Infant , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Young Adult
20.
BMC Plant Biol ; 15: 291, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26674306

ABSTRACT

BACKGROUND: Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. RESULTS: Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates' countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. CONCLUSIONS: These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and economical values. The biochemistry of the ripening process in dates is consistent with other fruits but natural dryness may prevent degenerative senescence in dates following ripening. Based on the finding that mature dates present varying extents of ripening, our survey of the date metabolome essentially revealed snapshots of interchanging metabolic states during ripening empowering an in-depth characterization of underlying biology.


Subject(s)
Fruit/growth & development , Metabolome , Phoeniceae/genetics , Plant Proteins/genetics , Chromatography, High Pressure Liquid , Fruit/metabolism , Gas Chromatography-Mass Spectrometry , Metabolomics , Phoeniceae/growth & development , Phoeniceae/metabolism , Plant Proteins/metabolism , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...