Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Ann N Y Acad Sci ; 1511(1): 59-86, 2022 05.
Article in English | MEDLINE | ID: mdl-35029310

ABSTRACT

The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.


Subject(s)
COVID-19 , Influenza Vaccines , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Global Health , Humans , Pandemics/prevention & control , Vaccines/therapeutic use
2.
Nat Commun ; 12(1): 2911, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006859

ABSTRACT

The impact of immune mediators on weight homeostasis remains underdefined. Interrogation of resistance to diet-induced obesity in mice lacking a negative regulator of Toll-like receptor signaling serendipitously uncovered a role for B cell activating factor (BAFF). Here we show that overexpression of BAFF in multiple mouse models associates with protection from weight gain, approximating a log-linear dose response relation to BAFF concentrations. Gene expression analysis of BAFF-stimulated subcutaneous white adipocytes unveils upregulation of lipid metabolism pathways, with BAFF inducing white adipose tissue (WAT) lipolysis. Brown adipose tissue (BAT) from BAFF-overexpressing mice exhibits increased Ucp1 expression and BAFF promotes brown adipocyte respiration and in vivo energy expenditure. A proliferation-inducing ligand (APRIL), a BAFF homolog, similarly modulates WAT and BAT lipid handling. Genetic deletion of both BAFF and APRIL augments diet-induced obesity. Lastly, BAFF/APRIL effects are conserved in human adipocytes and higher BAFF/APRIL levels correlate with greater BMI decrease after bariatric surgery. Together, the BAFF/APRIL axis is a multifaceted immune regulator of weight gain and adipose tissue function.


Subject(s)
B-Cell Activating Factor/genetics , Obesity/genetics , Signal Transduction/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Weight Gain/genetics , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/cytology , Adipose Tissue, White/metabolism , Animals , B-Cell Activating Factor/metabolism , Cells, Cultured , Diet, High-Fat/adverse effects , Gene Expression Profiling/methods , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/etiology , Obesity/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
3.
J Clin Invest ; 129(9): 3702-3716, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31211700

ABSTRACT

Resident microbiota activate regulatory cells that modulate intestinal inflammation and promote and maintain intestinal homeostasis. IL-10 is a key mediator of immune regulatory function. Our studies described the functional importance and mechanisms by which gut microbiota and specific microbial components influenced the development of intestinal IL-10-producing B cells. We used fecal transplant to germ-free (GF) Il10+/EGFP reporter and Il10-/- mice to demonstrate that microbiota from specific pathogen-free mice primarily stimulated IL-10-producing colon-specific B cells and T regulatory-1 cells in ex-GF mice. IL-10 in turn down-regulated microbiota-activated mucosal inflammatory cytokines. TLR2/9 ligands and enteric bacterial lysates preferentially induced IL-10 production and regulatory capacity of intestinal B cells. Analysis of Il10+/EGFP mice crossed with additional gene-deficient strains and B cell co-transfer studies demonstrated that microbiota-induced IL-10-producing intestinal B cells ameliorated chronic T cell-mediated colitis in a TLR2, MyD88 and PI3K-dependent fashion. In vitro studies implicated PI3Kp110δ and AKT downstream signaling. These studies demonstrated that resident enteric bacteria activated intestinal IL-10-producing B cells through TLR2, MyD88 and PI3K pathways. These B cells reduced colonic T cell activation and maintained mucosal homeostasis in response to intestinal microbiota.


Subject(s)
B-Lymphocytes, Regulatory/microbiology , Gastrointestinal Microbiome , Interleukin-10/metabolism , Myeloid Differentiation Factor 88/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Toll-Like Receptor 2/metabolism , Animals , B-Lymphocytes, Regulatory/immunology , Colitis/microbiology , Cytokines/metabolism , Down-Regulation , Fecal Microbiota Transplantation , Germ-Free Life , Green Fluorescent Proteins/metabolism , Immunity, Innate , Inflammation , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 9/metabolism
7.
Nat Med ; 23(7): 829-838, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28604704

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the disease spectrum in humans, including bridging hepatic fibrosis. Here we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high-fat diet (HFD)-induced NAFLD pathogenesis. Disease exacerbation at thermoneutrality was conserved across multiple mouse strains and was associated with augmented intestinal permeability, an altered microbiome and activation of inflammatory pathways that are associated with the disease in humans. Depletion of Gram-negative microbiota, hematopoietic cell deletion of Toll-like receptor 4 (TLR4) and inactivation of the IL-17 axis resulted in altered immune responsiveness and protection from thermoneutral-housing-driven NAFLD amplification. Finally, female mice, typically resistant to HFD-induced obesity and NAFLD, develop full disease characteristics at thermoneutrality. Thus, thermoneutral housing provides a sex-independent model of exacerbated NAFLD in mice and represents a novel approach for interrogation of the cellular and molecular mechanisms underlying disease pathogenesis.


Subject(s)
Diet, High-Fat , Housing, Animal , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Receptors, Interleukin-17/immunology , Stress, Physiological/immunology , Temperature , Toll-Like Receptor 4/metabolism , Animals , Cold Temperature , Corticosterone/metabolism , Disease Models, Animal , Disease Progression , Female , Flow Cytometry , Gastrointestinal Microbiome/immunology , Gene Expression Profiling , Gram-Negative Bacteria/immunology , Hematopoietic Stem Cells/metabolism , Humans , Inflammation , Intestinal Mucosa/metabolism , Jejunum/metabolism , Machine Learning , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/immunology , Obesity/immunology , Permeability , Receptors, Interleukin-17/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sex Factors , Toll-Like Receptor 4/genetics
8.
JCI Insight ; 2(5): e91288, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28289719

ABSTRACT

Preterm birth (PTB) is a leading worldwide cause of morbidity and mortality in infants. Maternal inflammation induced by microbial infection is a critical predisposing factor for PTB. However, biological processes associated with competency of pathogens, including viruses, to induce PTB or sensitize for secondary bacterial infection-driven PTB are unknown. We show that pathogen/pathogen-associated molecular pattern-driven activation of type I IFN/IFN receptor (IFNAR) was sufficient to prime for systemic and uterine proinflammatory chemokine and cytokine production and induction of PTB. Similarly, treatment with recombinant type I IFNs recapitulated such effects by exacerbating proinflammatory cytokine production and reducing the dose of secondary inflammatory challenge required for induction of PTB. Inflammatory challenge-driven induction of PTB was eliminated by defects in type I IFN, TLR, or IL-6 responsiveness, whereas the sequence of type I IFN sensing by IFNAR on hematopoietic cells was essential for regulation of proinflammatory cytokine production. Importantly, we also show that type I IFN priming effects are conserved from mice to nonhuman primates and humans, and expression of both type I IFNs and proinflammatory cytokines is upregulated in human PTB. Thus, activation of the type I IFN/IFNAR axis in pregnancy primes for inflammation-driven PTB and provides an actionable biomarker and therapeutic target for mitigating PTB risk.


Subject(s)
Inflammation/physiopathology , Interferon Type I/physiology , Premature Birth , Animals , Cytokines/physiology , Disease Susceptibility , Female , Humans , Infant, Newborn , Interferon Type I/metabolism , Mice , Pregnancy , Signal Transduction
9.
Mol Metab ; 5(11): 1121-1130, 2016 11.
Article in English | MEDLINE | ID: mdl-27818938

ABSTRACT

OBJECTIVES: Obesity and obesity-associated inflammation is central to a variety of end-organ sequelae including atherosclerosis, a leading cause of death worldwide. Although mouse models have provided important insights into the immunopathogenesis of various diseases, modeling atherosclerosis in mice has proven difficult. Specifically, wild-type (WT) mice are resistant to developing atherosclerosis, while commonly used genetically modified mouse models of atherosclerosis are poor mimics of human disease. The lack of a physiologically relevant experimental model of atherosclerosis has hindered the understanding of mechanisms regulating disease development and progression as well as the development of translational therapies. Recent evidence suggests that housing mice within their thermoneutral zone profoundly alters murine physiology, including both metabolic and immune processes. We hypothesized that thermoneutral housing would allow for augmentation of atherosclerosis induction and progression in mice. METHODS: ApoE-/- and WT mice were housed at either standard (TS) or thermoneutral (TN) temperatures and fed either a chow or obesogenic "Western" diet. Analysis included quantification of (i) obesity and obesity-associated downstream sequelae, (ii) the development and progression of atherosclerosis, and (iii) inflammatory gene expression pathways related to atherosclerosis. RESULTS: Housing mice at TN, in combination with an obesogenic "Western" diet, profoundly augmented obesity development, exacerbated atherosclerosis in ApoE-/- mice, and initiated atherosclerosis development in WT mice. This increased disease burden was associated with altered lipid profiles, including cholesterol levels and fractions, and increased aortic plaque size. In addition to the mild induction of atherosclerosis, we similarly observed increased levels of aortic and white adipose tissue inflammation and increased circulating immune cell expression of pathways related to adverse cardiovascular outcome. CONCLUSIONS: In sum, our novel data in WT C57Bl/6 mice suggest that modulation of a single environmental variable, temperature, dramatically alters mouse physiology, metabolism, and inflammation, allowing for an improved mouse model of atherosclerosis. Thus, thermoneutral housing of mice shows promise in yielding a better understanding of the cellular and molecular pathways underlying the pathogenesis of diverse diseases.


Subject(s)
Atherosclerosis/immunology , Inflammation , Temperature , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
Eur J Immunol ; 46(8): 2018-27, 2016 08.
Article in English | MEDLINE | ID: mdl-27287239

ABSTRACT

Regulatory mechanisms initiated by allergen-specific immunotherapy are mainly attributed to T cell derived IL-10. However, it has not been shown that T cell derived IL-10 is required for successful tolerance induction (TI). Here, we analyze cellular sources and the functional relevance of cell type specific IL-10 during TI in a murine model of allergic airway inflammation. While TI was effective in IL-10 competent mice, neutralizing IL-10 prior to tolerogenic treatment completely abrogated the beneficial effects. Cellular sources of IL-10 during TI were identified by using transcriptional reporter mice as T cells, B cells, and to a lesser extent DCs. Interestingly, TI was still effective in mice with T cell, B cell, B and T cell, or DC-specific IL-10 deficiency. In contrast, TI was not possible in mice lacking IL-10 in all hematopoetic cells, while it was effective in bone marrow (BM) chimera that lacked IL-10 only in nonhematopoetic cells. Taken together, allergen-specific tolerance depends on IL-10 from hematopoetic sources. The beneficial effects of allergen-specific immunotherapy cannot solely be attributed to IL-10 from T cells, B cells, or even DCs, suggesting a high degree of cellular redundancy in IL-10-mediated tolerance.


Subject(s)
Dendritic Cells/immunology , Hypersensitivity/immunology , Immune Tolerance , Inflammation/immunology , Interleukin-10/genetics , T-Lymphocytes, Regulatory/immunology , Allergens/immunology , Animals , B-Lymphocytes/immunology , Desensitization, Immunologic , Interleukin-10/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout
12.
J Exp Med ; 212(11): 1759-69, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26458772

ABSTRACT

The world is in need of more effective approaches to controlling tuberculosis. The development of improved control strategies has been hampered by deficiencies in the tools available for detecting Mycobacterium tuberculosis and defining the dynamic consequences of the interaction of M. tuberculosis with its human host. Key needs include a highly sensitive, specific nonsputum diagnostic; biomarkers predictive of responses to therapy; correlates of risk for disease development; and host response-independent markers of M. tuberculosis infection. Tools able to sensitively detect and quantify total body M. tuberculosis burden might well be transformative across many needed use cases. Here, we review the current state of the field, paying particular attention to needed changes in experimental paradigms that would facilitate the discovery, validation, and development of such tools.


Subject(s)
Tuberculosis/prevention & control , Biomarkers , Humans , Interferon Type I/physiology , Sputum/microbiology , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/microbiology
13.
Vaccine ; 33(30): 3471-9, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26055297

ABSTRACT

The need to keep vaccines cold in the face of high ambient temperatures and unreliable access to electricity is a challenge that limits vaccine coverage in low and middle-income countries (LMICs). Greater vaccine thermostability is generally touted as the obvious solution. Despite conventional wisdom, comprehensive analysis of the value proposition for increasing vaccine thermostability has been lacking. Further, while significant investments have been made in increasing vaccine thermostability in recent years, no vaccine products have been commercialized as a result. We analyzed the value proposition for increasing vaccine thermostability, grounding the analysis in specific vaccine use cases (e.g., use in routine immunization [RI] programs, or in campaigns) and in the broader context of cold chain technology and country level supply chain system design. The results were often surprising. For example, cold chain costs actually represent a relatively small fraction of total vaccine delivery system costs. Further, there are critical, vaccine use case-specific temporal thresholds that need to be overcome for significant benefits to be reaped from increasing vaccine thermostability. We present a number of recommendations deriving from this analysis that suggest a rational path toward unlocking the value (maximizing coverage, minimizing total system costs) of increased vaccine thermostability, including: (1) the full range of thermostability of existing vaccines should be defined and included in their labels; (2) for new vaccines, thermostability goals should be addressed up-front at the level of the target product profile; (3) improving cold chain infrastructure and supply chain system design is likely to have the largest impact on total system costs and coverage in the short term-and will influence the degree of thermostability required in the future; (4) in the long term, there remains value in monitoring the emergence of disruptive technologies that could remove the entire RI portfolio out of the cold chain.


Subject(s)
Developing Countries , Drug Stability , Vaccines/immunology , Vaccines/supply & distribution , Humans , Temperature , Vaccines/radiation effects
14.
Philos Trans R Soc Lond B Biol Sci ; 370(1671)2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25964461

ABSTRACT

Vaccines are one of the most impactful and cost-effective public health measures of the twentieth century. However, there remain great unmet needs to develop vaccines for globally burdensome infectious diseases and to allow more timely responses to emerging infectious disease threats. Recent advances in the understanding of immunological principles operative not just in model systems but in humans in concert with the development and application of powerful new tools for profiling human immune responses, in our understanding of pathogen variation and evolution, and in the elucidation of the structural aspects of antibody-pathogen interactions, have illuminated pathways by which these unmet needs might be addressed. Using these advances as foundation, we herein present a conceptual framework by which the discovery, development and iterative improvement of effective vaccines for HIV, malaria and other globally important infectious diseases might be accelerated.


Subject(s)
AIDS Vaccines/immunology , Global Health , HIV Infections/prevention & control , Communicable Disease Control , Humans
15.
Immunol Rev ; 264(1): 363-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25703572

ABSTRACT

The road to a more efficacious vaccine that could be a truly transformative tool for decreasing tuberculosis morbidity and mortality, along with Mycobacterium tuberculosis transmission, is quite daunting. Despite this, there are reasons for optimism. Abetted by better conceptual clarity, clear acknowledgment of the degree of our current immunobiological ignorance, the availability of powerful new tools for dissecting the immunopathogenesis of human tuberculosis, the generation of more creative diversity in tuberculosis vaccine concepts, the development of better fit-for-purpose animal models, and the potential of more pragmatic approaches to the clinical testing of vaccine candidates, the field has promise for delivering novel tools for dealing with this worldwide scourge of poverty.


Subject(s)
Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control , Animals , Disease Models, Animal , Humans , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/adverse effects , Vaccines, Subunit
16.
Endocrinology ; 155(10): 4006-14, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25051450

ABSTRACT

Infection-induced inflammation, frequently associated with increased production of proinflammatory cytokines, is considered a significant contributor to preterm birth. A G protein-coupled cannabinoid receptor 2 (CB2), encoded by Cnr2, is expressed in various immune cells and was shown to modulate immune responses. We show here that Cnr2, but not Cnr1, deficient mice are resistant to lipopolysaccharide (LPS)-driven preterm birth and suppression of serum progesterone levels. After LPS challenge, Cnr2(-/-) mice exhibited increased serum levels of IL-10 with decreased IL-6 levels. These changes were associated with reduced LPS-induced Ptgs2 expression at the maternal-conceptus interface on day 16 of pregnancy. LPS stimulation of Cnr2(-/-) dendritic cells in vitro resulted in increased IL-10 with reduced IL-6 production and correlated with increased cAMP accumulation. Collectively, our results suggest that increased IL-10 production occurring via augmented cAMP accumulation represents a potential mechanism for the resistance of Cnr2(-/-) mice to LPS-induced preterm birth. These results may have clinical relevance, because currently, there are limited options to prevent preterm birth.


Subject(s)
Inflammation/complications , Premature Birth/etiology , Receptor, Cannabinoid, CB2/genetics , Animals , Cytokines/blood , Female , Inflammation/blood , Inflammation/chemically induced , Inflammation/genetics , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Premature Birth/blood , Premature Birth/genetics , Progesterone/blood , Toll-Like Receptor 4/genetics
17.
J Clin Invest ; 124(5): 2009-22, 2014 05.
Article in English | MEDLINE | ID: mdl-24713654

ABSTRACT

A single G protein-coupled receptor (GPCR) can activate multiple signaling cascades based on the binding of different ligands. The biological relevance of this feature in immune regulation has not been evaluated. The chemokine-binding GPCR CXCR3 is preferentially expressed on CD4+ T cells, and canonically binds 3 structurally related chemokines: CXCL9, CXCL10, and CXCL11. Here we have shown that CXCL10/CXCR3 interactions drive effector Th1 polarization via STAT1, STAT4, and STAT5 phosphorylation, while CXCL11/CXCR3 binding induces an immunotolerizing state that is characterized by IL-10(hi) (Tr1) and IL-4(hi) (Th2) cells, mediated via p70 kinase/mTOR in STAT3- and STAT6-dependent pathways. CXCL11 binds CXCR3 with a higher affinity than CXCL10, suggesting that CXCL11 has the potential to restrain inflammatory autoimmunity. We generated a CXCL11-Ig fusion molecule and evaluated its use in the EAE model of inflammatory autoimmune disease. Administration of CXCL11-Ig during the first episode of relapsing EAE in SJL/J mice not only led to rapid remission, but also prevented subsequent relapse. Using GFP-expressing effector CD4+ T cells, we observed that successful therapy was associated with reduced accumulation of these cells at the autoimmune site. Finally, we showed that very low doses of CXCL11 rapidly suppress signs of EAE in C57BL/6 mice lacking functional CXCL11.


Subject(s)
Chemokine CXCL11/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Chemokine CXCL11/genetics , Chemokine CXCL11/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Mice , Mice, Knockout , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , T-Lymphocytes, Regulatory/pathology , Th1 Cells/immunology , Th1 Cells/pathology
18.
Blood ; 123(13): 2084-93, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24470589

ABSTRACT

Expression of the activating transcription factor 3 (ATF3) gene is induced by Toll-like receptor (TLR) signaling. In turn, ATF3 protein inhibits the expression of various TLR-driven proinflammatory genes. Given its counter-regulatory role in diverse innate immune responses, we defined the effects of ATF3 on neutrophilic airway inflammation in mice. ATF3 deletion was associated with increased lipopolysaccharide (LPS)-driven airway epithelia production of CXCL1, but not CXCL2, findings concordant with a consensus ATF3-binding site identified solely in the Cxcl1 promoter. Unexpectedly, ATF3-deficient mice did not exhibit increased airway neutrophilia after LPS challenge. Bone marrow chimeras revealed a specific reduction in ATF3(-/-) neutrophil recruitment to wild-type lungs. In vitro, ATF3(-/-) neutrophils exhibited a profound chemotaxis defect. Global gene expression analysis identified ablated Tiam2 expression in ATF3(-/-) neutrophils. TIAM2 regulates cellular motility by activating Rac1-mediated focal adhesion disassembly. Notably, ATF3(-/-) and ATF3-sufficient TIAM2 knockdown neutrophils, both lacking TIAM2, exhibited increased focal complex area, along with excessive CD11b-mediated F-actin polymerization. Together, our data describe a dichotomous role for ATF3-mediated regulation of neutrophilic responses: inhibition of neutrophil chemokine production but promotion of neutrophil chemotaxis.


Subject(s)
Activating Transcription Factor 3/physiology , Immune System Diseases/genetics , Leukocyte Disorders/genetics , Activating Transcription Factor 3/genetics , Animals , Cells, Cultured , Chemokine CXCL1/metabolism , Lipopolysaccharides/pharmacology , Lung/cytology , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/genetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism
19.
Am J Respir Crit Care Med ; 189(3): 301-13, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24392884

ABSTRACT

RATIONALE: Goblet cell metaplasia accompanies common pulmonary disorders that are prone to recurrent viral infections. Mechanisms regulating both goblet cell metaplasia and susceptibility to viral infection associated with chronic lung diseases are incompletely understood. OBJECTIVES: We sought to identify the role of the transcription factor FOXA3 in regulation of goblet cell metaplasia and pulmonary innate immunity. METHODS: FOXA3 was identified in airways from patients with asthma and chronic obstructive pulmonary disease. We produced transgenic mice conditionally expressing Foxa3 in airway epithelial cells and developed human bronchial epithelial cells expressing Foxa3. Foxa3-regulated genes were identified by immunostaining, Western blotting, and RNA analysis. Direct binding of FOXA3 to target genes was identified by chromatin immunoprecipitation sequencing correlated with RNA sequencing. MEASUREMENTS AND MAIN RESULTS: FOXA3 was highly expressed in airway goblet cells from patients with asthma and chronic obstructive pulmonary disease. FOXA3 was induced by either IL-13 or rhinovirus. Foxa3 induced goblet cell metaplasia and enhanced expression of a network of genes mediating mucus production. Paradoxically, FOXA3 inhibited rhinovirus-induced IFN production, IRF-3 phosphorylation, and IKKε expression and inhibited viral clearance and expression of genes required for antiviral defenses, including MDA5, RIG-I, TLR3, IRF7/9, and nuclear factor-κB. CONCLUSIONS: FOXA3 induces goblet cell metaplasia in response to infection or Th2 stimulation. Suppression of IFN signaling by FOXA3 provides a plausible mechanism that may serve to limit ongoing Th1 inflammation during the resolution of acute viral infection; however, inhibition of innate immunity by FOXA3 may contribute to susceptibility to viral infections associated with chronic lung disorders accompanied by chronic goblet cell metaplasia.


Subject(s)
Asthma/metabolism , Goblet Cells/pathology , Hepatocyte Nuclear Factor 3-gamma/metabolism , Immunity, Innate/physiology , Picornaviridae Infections/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , Asthma/complications , Asthma/immunology , Asthma/pathology , Biomarkers/metabolism , Blotting, Western , Chromatin Immunoprecipitation , Disease Susceptibility , Goblet Cells/immunology , Goblet Cells/metabolism , Hepatocyte Nuclear Factor 3-gamma/immunology , Humans , Interferons/metabolism , Metaplasia , Mice , Mice, Transgenic , Picornaviridae Infections/etiology , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , Rhinovirus , Sequence Analysis, RNA , Th1-Th2 Balance
20.
J Immunol ; 192(4): 1661-70, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24403534

ABSTRACT

The cytokine IL-10 has an important role in limiting inflammation in many settings, including toxoplasmosis. In the present studies, an IL-10 reporter mouse was used to identify the sources of this cytokine following challenge with Toxoplasma gondii. During infection, multiple cell types expressed the IL-10 reporter but NK cells were a major early source of this cytokine. These IL-10 reporter(+) NK cells expressed high levels of the IL-12 target genes T-bet, KLRG1, and IFN-γ, and IL-12 depletion abrogated reporter expression. However, IL-12 signaling alone was not sufficient to promote NK cell IL-10, and activation of the aryl hydrocarbon receptor (AHR) was also required for maximal IL-10 production. NK cells basally expressed the AHR, relevant chaperone proteins, and the AHR nuclear translocator, which heterodimerizes with the AHR to form a competent transcription factor. In vitro studies revealed that IL-12 stimulation increased NK cell AHR levels, and the AHR and AHR nuclear translocator were required for optimal production of IL-10. Additionally, NK cells isolated from T. gondii-infected Ahr(-/-) mice had impaired expression of IL-10, which was associated with increased resistance to this infection. Taken together, these data identify the AHR as a critical cofactor involved in NK cell production of IL-10.


Subject(s)
Interleukin-10/biosynthesis , Interleukin-12/metabolism , Killer Cells, Lymphokine-Activated/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Toxoplasma/immunology , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/biosynthesis , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Dimerization , Genes, Reporter , Inflammation/immunology , Interferon-gamma/biosynthesis , Lectins, C-Type , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Receptors, Aryl Hydrocarbon/deficiency , Receptors, Aryl Hydrocarbon/genetics , Receptors, Immunologic/biosynthesis , Signal Transduction/immunology , T-Box Domain Proteins/biosynthesis , Toxoplasmosis, Animal/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...