Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 4657431, 2022.
Article in English | MEDLINE | ID: mdl-36518810

ABSTRACT

One of the most difficult challenges of multimedia transmission during the last two decades has been the retrieval of degraded or missing regions of images and videos while maintaining satisfactory perceptual accuracy. The objective is to retrieve lost data by using the similarity between frames. Usually, error concealment (EC) schemes depend on replacing incorrect data with data that are identical to the initial. This is possible because video contains a high degree of self-similarity. This research focuses on applying an EC approach in transform-domain video sequences. To conduct EC on films, they must first be translated to frames and then transformed using one of the available transformations into frequency-domain images. Using successive frames, it is possible to recover lost or incorrect data from images. Intra-coded frames (I-frames) may be used to recreate lost knowledge in predictive (P-frames) and bidirectional predictive frames (B-frames). I-frame knowledge that has been lost may be restored using previous intra-coded frames. The use of wavelet error concealment generated more precise results than the other techniques. In this study, it was discovered that covering faults in the density sector with wavelets produces more reliable results than the other techniques.


Subject(s)
Algorithms
2.
Comput Intell Neurosci ; 2022: 9261438, 2022.
Article in English | MEDLINE | ID: mdl-35665283

ABSTRACT

In the last few years, a great deal of interesting research has been achieved on automatic facial emotion recognition (FER). FER has been used in a number of ways to make human-machine interactions better, including human center computing and the new trends of emotional artificial intelligence (EAI). Researchers in the EAI field aim to make computers better at predicting and analyzing the facial expressions and behavior of human under different scenarios and cases. Deep learning has had the greatest influence on such a field since neural networks have evolved significantly in recent years, and accordingly, different architectures are being developed to solve more and more difficult problems. This article will address the latest advances in computational intelligence-related automated emotion recognition using recent deep learning models. We show that both deep learning-based FER and models that use architecture-related methods, such as databases, can collaborate well in delivering highly accurate results.


Subject(s)
Facial Recognition , Artificial Intelligence , Emotions , Facial Expression , Humans , Neural Networks, Computer
3.
JMIR Cancer ; 8(2): e35020, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35430561

ABSTRACT

BACKGROUND: The advancement of cancer research has been facilitated through freely available cancer literature, databases, and tools. The age of genomics and big data has given rise to the need for cooperation and data sharing in order to make efficient use of this new information in the COVID-19 pandemic. Although there are many databases for cancer research, their access is not easy owing to different ways of processing and managing the data. There is an absence of a unified platform to manage all of them in a transparent and more comprehensible way. OBJECTIVE: In this study, an improved integrated cancer research database and platform is provided to facilitate a deeper statistical insight into the correlation between cancer and the COVID-19 pandemic, unifying the collection of almost all previous published cancer databases and defining a model web database for cancer research, and scoring databases on the basis of the variety types of cancer, sample size, completeness of omics results, and user interface. METHODS: Databases examined and integrated include the Data Portal database, Genomic database, Proteomic database, Expression database, Gene database, and Mutation database; and it is expected that this launch will sort, save, advance the understanding and encourage the use of these resources in the cancer research environment. RESULTS: To make it easy to search valuable information, 85 cancer databases are provided in the form of a table, and a database of databases named the Cancer Research Database (CRDB) has been built and presented herein. Furthermore, the CRDB has been herein equipped with unique navigation tools in order to be explored by three methods; that is, any single database can be browsed by typing the name in the given search bar, while all categories can be browsed by clicking on the name of the category or image expression icon, thus serving as a facility that could provide all the category databases on a single click. CONCLUSIONS: The computational platform (PHP, HTML, CSS, and MySQL) used to build CRDB for the cancer scientific community can be freely investigated and browsed on the internet and is planned to be updated in a timely manner. In addition, based on the proposed platform, the status and diagnoses statistics of cancer during the COVID-19 pandemic have been thoroughly investigated herein using CRDB, thus providing an easy-to-manage, understandable framework that mines knowledge for future researchers.

SELECTION OF CITATIONS
SEARCH DETAIL
...