Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241899

ABSTRACT

Bleomycin, which is widely used as an antitumor agent, possesses serious adverse effects such as pulmonary toxicity. Local nanoaerosol deposition for lung cancer treatment is a promising alternative to drug delivery to lung lesions. The aim of this work is to test the hypothesis that bleomycin nanoaerosol can be effectively used to treat multiple lung metastases. To obtain bleomycin nanoaerosol, an aerosol generator based on electrospray of a solution of a nonvolatile substance with gas-phase neutralization of charged aerosol particles was used. Lung metastases in murine Lewis lung carcinoma and B16 melanoma animal models were counted. The effect of inhaled bleomycin nanoparticles on the number and volume of metastases, as well as pulmonary side effects, was investigated. Using a mouse exposure chamber, the dose-dependent effect of inhaled bleomycin on tumor volume was evaluated in comparison with intraperitoneal administration. Bleomycin nanoaerosol reduced the volume of metastases and produced a higher antitumor effect at much lower doses. It has been established that long-term exposure to nanoaerosol with a low dose of bleomycin is capable of suppressing cancer cell growth. The treatment was well tolerated. In the lungs, minor changes were found in the form of focal-diffuse infiltration of the lung parenchyma.


Subject(s)
Carcinoma , Lung Neoplasms , Animals , Mice , Bleomycin/toxicity , Respiratory Aerosols and Droplets , Lung , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Carcinoma/pathology
2.
Arch Pharm (Weinheim) ; 355(1): e2100316, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34668210

ABSTRACT

The aim of this study was to explore the mechanisms of action of alsevirone in prostate cancer (PC) in vitro and in vivo: CYP17A1 inhibition, cytotoxic, apoptotic, and antitumor effects in comparison with abiraterone. The CYP17A1-inhibitory activity was investigated in rat testicular microsomes using high-performance liquid chromatography. Testosterone levels were evaluated using enzyme-linked immunoassay. IC50 values were calculated for PC3, DU-145, LNCaP, and 22Rv1 cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. The antitumor effect in vivo was studied in DU-145 and 22Rv1 subcutaneous xenografts in Balb/c nude mice. Alsevirone reduced the CYP17A1-inhibitory activity by 98% ± 0.2%. A statistically significant reduction in the testosterone concentration in murine blood was recorded after the 7th administration of 300 mg/kg alsevirone at 0.31 ± 0.03 ng/ml (p < .001) versus 0.98 ± 0.22 ng/ml (p = .392) after abiraterone administration and 1.52 ± 0.49 ng/ml in control animals. Alsevirone was more cytotoxic than abiraterone in DU-145, LNCaP, and 22Rv1 cells, with IC50 values of 23.80 ± 1.18 versus 151.43 ± 23.70 µM, 22.87 ± 0.54 versus 28.80 ± 1.61 µM, and 35.86 ± 5.63 versus 109.87 ± 35.15 µM, respectively. Alsevirone and abiraterone significantly increased annexin V-positive, caspase 3/7-positive, and activated Bcl-2-positive cells. In 22Rv1 xenografts, alsevirone 300 mg/kg × 10/24 h per os inhibited tumor growth: on Day 9 of treatment, tumor growth inhibition = 59% (p = .022). Thus, alsevirone demonstrated significant antitumor activity associated with CYP17A1 inhibition, apoptosis in PC cells, and testosterone reduction.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Norpregnadienes/pharmacology , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Norpregnadienes/administration & dosage , PC-3 Cells , Rats , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Testosterone/blood , Xenograft Model Antitumor Assays
3.
J Med Chem ; 63(21): 13031-13063, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32985193

ABSTRACT

A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 µm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Imidazoles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Crystallography, X-Ray , DNA Damage/drug effects , Humans , Ligands , MCF-7 Cells , Models, Biological , Molecular Conformation , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Spheroids, Cellular/drug effects , Structure-Activity Relationship , Telomerase/antagonists & inhibitors , Telomerase/metabolism
4.
J Gene Med ; 18(9): 220-33, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27461566

ABSTRACT

BACKGROUND: The combination of stem cell-based gene therapy with chemotherapy comprises an advantageous strategy that results in a reduction of system toxicity effects and an improvement in the general efficacy of treatment. In the present study, we estimated the efficacy of adipose tissue-derived mesenchymal stem cells (AT-MSCs) expressing cytosine deaminase (CDA) combined with lysomustine chemotherapy in mice bearing late stage Lewis lung carcinoma (LLC). METHODS: Adipose tissue-derived mesenchymal stem cells were transfected with non-insert plasmid construct transiently expressing fused cytosine deaminase-uracil phosphoribosyltransferase protein (CDA/UPRT) or the same construct fused with Herpes Simplex Virus Type1 tegument protein VP22 (CDA/UPRT/VP22). Systemic administration of 5-fluorocytosine (5FC) and lysomustine was implemented after a single intratumoral injection of transfected AT-MSCs. RESULTS: We demonstrated that direct intratumoral transplantation of AT-MSCs expressing CDA/UPRT or CDA/UPRT/VP22 followed by systemic administration of 5FC resulted in a significant tumor growth inhibition. There was a 56% reduction in tumor volume in mice treated by AT-MSCs-CDA/UPRT + 5FC or with AT-MSCs-CDA/UPRT/VP22 + 5FC compared to control animals grafted with lung carcinoma alone. Transplantation of AT-MSCs-CDA/UPRT + 5FC and AT-MSCs-CDA/UPRT/VP22 + 5FC prolonged the life span of mice bearing LLC by 27% and 31%, respectively. Co-administration of lysomustine and AT-MSCs-CDA/UPRT + 5FC led to tumor growth inhibition (by 86%) and life span extension (by 60%) compared to the control group. CONCLUSIONS: Our data indicate that a combination CDA/UPRT-expressing AT-MSCs with lysomustine has a superior antitumor effect in the murine lung carcinoma model compared to monotherapies with transfected AT-MSCs or lysomustine alone, possibly because of a synergistic effect of the combination therapy. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Carcinoma, Lewis Lung/therapy , Cytosine Deaminase/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Nitrosourea Compounds/pharmacology , Adipose Tissue/cytology , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Combined Modality Therapy , Cytosine Deaminase/genetics , Female , Flucytosine/administration & dosage , Flucytosine/pharmacology , Genetic Therapy/methods , Male , Mice, Inbred C57BL , Nitrosourea Compounds/administration & dosage , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Survival Analysis , Tumor Burden/drug effects , Tumor Burden/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...