Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 15: 1411315, 2024.
Article in English | MEDLINE | ID: mdl-38979410

ABSTRACT

Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.


Subject(s)
Killer Cells, Natural , Mice, Knockout , Receptor, Anaphylatoxin C5a , Uterus , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Female , Animals , Pregnancy , Mice , Uterus/immunology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Placenta/immunology , Placenta/metabolism , Complement C5a/immunology , Complement C5a/metabolism , Mice, Inbred C57BL , Interferon-gamma/metabolism , Interferon-gamma/immunology
2.
Front Immunol ; 15: 1426526, 2024.
Article in English | MEDLINE | ID: mdl-39055717

ABSTRACT

Introduction: Complement-mediated damage to the myocardium during acute myocardial infarction (AMI), particularly the late components of the terminal pathway (C5-convertase and C5b-9), have previously been characterized. Unfortunately, only few studies have reported a direct association between dysregulated complement activation and endothelial function. Hence, little attention has been paid to the role of the anaphylatoxin C5a. The endothelial glycocalyx (eGC) together with the cellular actin cortex provide a vasoprotective barrier against chronic vascular inflammation. Changes in their nanomechanical properties (stiffness and height) are recognized as hallmarks of endothelial dysfunction as they correlate with the bioavailability of vasoactive substances, such as nitric oxide (NO). Here, we determined how the C5a:C5aR1 axis affects the eGC and endothelial function in AMI. Methods: Samples of fifty-five patients with ST-elevation myocardial infarction (STEMI) vs. healthy controls were analyzed in this study. eGC components and C5a levels were determined via ELISA; NO levels were quantified chemiluminescence-based. Endothelial cells were stimulated with C5a or patient sera (with/without C5a-receptor1 antagonist "PMX53") and the nanomechanical properties of eGC quantified using the atomic force microscopy (AFM)-based nanoindentation technique. To measure actin cytoskeletal tension regulator activation (RhoA and Rac1) G-LISA assays were applied. Vascular inflammation was examined by quantifying monocyte-endothelium interaction via AFM-based single-cell-force spectroscopy. Results: Serum concentrations of eGC components and C5a were significantly increased during STEMI. Serum and solely C5a stimulation decreased eGC height and stiffness, indicating shedding of the eGC. C5a enhanced RhoA activation, resulting in increased cortical stiffness with subsequent reduction in NO concentrations. Monocyte adhesion to the endothelium was enhanced after both C5a and stimulation with STEMI serum. eGC degradation- and RhoA-induced cortical stiffening with subsequent endothelial dysfunction were attenuated after administering PMX53. Conclusion: This study demonstrates that dysregulated C5a activation during AMI results in eGC damage with subsequent endothelial dysfunction and reduced NO bioavailability, indicating progressively developing vascular inflammation. This could be prevented by antagonizing C5aR1, highlighting the role of the C5a:C5a-Receptor1 axis in vascular inflammation development and endothelial dysfunction in AMI, offering new therapeutic approaches for future investigations.


Subject(s)
Complement Activation , Complement C5a , Glycocalyx , Myocardial Infarction , Receptor, Anaphylatoxin C5a , Humans , Glycocalyx/metabolism , Glycocalyx/pathology , Complement C5a/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Receptor, Anaphylatoxin C5a/metabolism , Male , Middle Aged , Female , Aged , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Signal Transduction , Nitric Oxide/metabolism
3.
J Invest Dermatol ; 142(10): 2715-2723.e2, 2022 10.
Article in English | MEDLINE | ID: mdl-35007559

ABSTRACT

Epidermolysis bullosa acquisita (EBA) is a rare blistering skin disease induced by autoantibodies directed against type VII collagen. The transfer of antibodies against murine type VII collagen into mice mimics the effector phase of EBA and results in a subepidermal blistering phenotype. Activation of the complement system, and especially the C5a/C5aR1 axis driving neutrophil activation, is critical for EBA pathogenesis. However, the role of the alternative C5a receptor, C5aR2, which is commonly thought to be more immunosuppressive, in the pathogenesis of EBA is still elusive. Therefore, we sought to delineate the functional relevance of C5aR2 during the effector phase of EBA. Interestingly, C5ar2-/- mice showed an attenuated disease phenotype, suggesting a pathogenic contribution of C5aR2 in disease progression. In vitro, C5ar2-/- neutrophils exhibited significantly reduced intracellular calcium flux, ROS release, and migratory capacity when activated with immune complexes or exposed to C5a. These functions were completely absent when C5ar1-/- neutrophils were activated. Moreover, C5aR2 deficiency lowered the ratio of activating and inhibitory FcγRs, impeding the sustainment of inflammation. Collectively, we show here a proinflammatory contribution of C5aR2 in the pathogenesis of antibody-induced tissue damage in experimental EBA.


Subject(s)
Epidermolysis Bullosa Acquisita , Animals , Antigen-Antibody Complex , Autoantibodies , Calcium/metabolism , Collagen Type VII/metabolism , Disease Models, Animal , Inflammation/metabolism , Mice , Neutrophils , Reactive Oxygen Species/metabolism , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, IgG/genetics , Receptors, IgG/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL