Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Biol ; 433(9): 166893, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33639211

ABSTRACT

The affinity system based on the artificial peptide ligand Strep-tag® II and engineered tetrameric streptavidin, known as Strep-Tactin®, offers attractive applications for the study of recombinant proteins, from detection and purification to functional immobilization. To further improve binding of the Strep-tag II to streptavidin we have subjected two protruding loops that shape its ligand pocket for the peptide - instead of D-biotin recognized by the natural protein - to iterative random mutagenesis. Sequence analyses of hits from functional screening assays revealed several unexpected structural motifs, such as a disulfide bridge at the base of one loop, replacement of the crucial residue Trp120 by Gly and a two-residue deletion in the second loop. The mutant m1-9 (dubbed Strep-Tactin XT) showed strongly enhanced affinity towards the Strep-tag II, which was further boosted in case of the bivalent Twin-Strep-tag®. Four representative streptavidin mutants were crystallized in complex with the Strep-tag II peptide and their X-ray structures were solved at high resolutions. In addition, the crystal structure of the complex between Strep-Tactin XT and the Twin-Strep-tag was elucidated, indicating a bivalent mode of binding and explaining the experimentally observed avidity effect. Our study illustrates the structural plasticity of streptavidin as a scaffold for ligand binding and reveals interaction modes that would have been difficult to predict. As result, Strep-Tactin XT offers a convenient reagent for the kinetically stable immobilization of recombinant proteins fused with the Twin-Strep-tag. The possibility of reversibly dissociating such complexes simply with D-biotin as a competing ligand enables functional studies in protein science as well as cell biology.


Subject(s)
Peptides/metabolism , Protein Engineering , Recombinant Fusion Proteins/metabolism , Streptavidin/chemistry , Streptavidin/metabolism , Crystallography, X-Ray , Ligands , Models, Molecular , Mutagenesis , Mutation , Peptides/chemistry , Protein Binding/genetics , Protein Conformation , Recombinant Fusion Proteins/chemistry , Streptavidin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL