Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; : 1-19, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095358

ABSTRACT

A novel mixed ligand Ni(II) metal complex has been investigated for the modification in structural conformation, coordination bond, and noncovalent interactions. The novel Ni(II) metal complex [Ni(TFPB)2(1,10-Ph)(DMF)] has been synthesized and structurally characterized, which featured six coordination with three bidentate ligands connected through oxygen and nitrogen atoms. The single-crystal X-ray analysis showed that the compound possessed octahedral geometry and C-H…F, C-H…O, and π…π intermolecular interactions resulting in the formation of supramolecular architecture contributed significantly towards the crystal packing and molecular stability. Hirshfeld surface analysis was carried out to validate various intermolecular interactions. Further, the 3D structural topologies were visualized using energy framework analysis. To explore the coordination stability and chemically reactive parameters of the novel Ni(II) complex, the electronic structure was optimized using density functional theory calculations. The natural bond orbital analysis revealed the various hyperconjugative interactions exhibited by the complex. In addition, the complex was screened for in silico studies to understand the antitumoricidal potential of the novel Ni(II) complex. Molecular docking studies were also performed against three targeted proteins (PDB ID: 6H0W, 6NE5, and 6E91) to investigate the binding mode and protein-ligand interactions. These results are further analyzed by molecular dynamic simulation to confirm the best possible interactions and stability in the active site of the targeted proteins with a simulation period of 100 ns.Communicated by Ramaswamy H. Sarma.

2.
Microb Pathog ; 166: 105508, 2022 May.
Article in English | MEDLINE | ID: mdl-35364241

ABSTRACT

The treatment of Methicillin-resistant staphylococcus aureus (MRSA) infections has become challenging due to the growth of multidrug resistance in the bacteria. Here we report the synthesis of pyridine-coupled pyrazoles as an antimicrobial agent against MRSA. A series of pyridine coupled pyrazoles were synthesized and synthesized compounds were characterized using FT-IR, 1H NMR, and Mass spectroscopy. The ADMET results of all the 14 active compounds are interpreted. To identify the potent compound the synthesized compounds screened for minimum inhibitory concentrations against MRSA and compared with standard drug vancomycin. Among the synthesized compounds 6d exhibited good antibacterial activity with MIC value 21 µg/mL, bacterial cell membrane damage study was studied potassium efflux, and cellular content leakage assay. Anticoagulant study for the potent compound also studied and validated by molecular docking and molecular dynamics simulation studies. The docking study of the synthesized compound was carried out and the study depicted that the pyridine ring of all the analogues binds with the various amino acids in the binding pocket of the active site of the Staphylocoagulase and PBP2a protein of MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Pyrazoles/pharmacology , Pyridines/pharmacology , Spectroscopy, Fourier Transform Infrared
3.
Chemosphere ; 287(Pt 2): 132153, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34500335

ABSTRACT

In the present work, we have synthesized a novel 2D GNR-CoB composite and was applied it for electrochemical sensing and photocatalytic degradation of the malachite green (MG). The physicochemical properties of the 2D GNR-CoB were analyzed using X-ray diffraction, Transmission electron microscopy, Energy dispersive X-ray diffraction which depicts the morphological and crystalline nature of the prepared composite. The pencil graphite electrode modified with 2D GNR-CoB composite showed excellent electrochemical response for MG detection with a LOD of 1.92 nM, linear range of 25-350 nM with a high sensitivity of 1.714 µA µM-1 cm-2. Besides, the 2D GNR-CoB modified PGE exhibited good recovery for the detection of MG in real samples such as green peas and lady's fingers. Furthermore, the 2D GNR-CoB modified electrode showed excellent photocatalytic activity for the degradation of MG. It suggests that under visible light, GNR-CoB material generates superoxide (·O2-) and hydroxyl (·OH) radicals for MG degradation. The prepared composite showed an efficiency of 91.28% towards the degradation of MG. Based on the experimental analysis and density functional theory calculations, a photocatalytic degradation mechanism pathway for MG is proposed. A quantitative structure-activity relationship study was used to examine the toxicity of the degradation intermediates.


Subject(s)
Graphite , Nanocomposites , Electrochemical Techniques , Electrodes , Humans , Rosaniline Dyes
4.
J Biomol Struct Dyn ; 40(22): 12106-12117, 2022.
Article in English | MEDLINE | ID: mdl-34424132

ABSTRACT

Methicillin Resistant Staphylococcus aureus (MRSA) is a major cause of severe hospital and infections acquired by the population and related morbidity and mortality. In this unique situation, there is a need of dynamic strong drug candidates to control MRSA diseases. Thus, the present work focuses on the synthesis and characterization of pyrimidinones and pyrimidinthiones coupled pyridine derivatives as anti-MRSA agent. The synthesized compounds were characterized by different spectroscopic techniques and evaluated against MRSA strain. Among them, 4e and 4 g possessed better antibacterial activity with MIC values of 10 µg and 8 µg respectively. The key determinant of the wide range beta-lactam resistance in MRSA strains is the Penicillin-Binding Protein 2a (PBP2a) but the gene encodes PBP2a which has a low affinity towards ß-lactam antibiotics. Because of this, the present investigation focused on the mechanism of PBP2a protein binding studies by in-silico studies. The synthesized compounds showed very good interactions with PBP2A compared with standard drug Vancomycin, among them compound 4 g showed better interaction with the binding score of -9.8 kcal/mol. Antibacterial activity was validated with molecular docking and molecular dynamic simulation. Simulation results revealed that protein-ligand interactions of 4 g compound stably sustained up to 20,000ps.Communicated by Ramaswamy H. Sarma.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Penicillin-Binding Proteins/chemistry , Pyridines/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins
5.
J Biomol Struct Dyn ; 40(14): 6656-6670, 2022 09.
Article in English | MEDLINE | ID: mdl-33625318

ABSTRACT

In December 2019, a new type of SARS corona virus emerged from China and caused a globally pandemic corona virus disease (COVID-19). This highly infectious virus has been named as SARS-CoV-2 by the International Committee of the Taxonomy of Viruses. It has severely affected a large population and economy worldwide. Globally various scientific communities have been involved in studying this newly emerged virus and is lifecycle. Multiple diverse studies are in progress to design novel therapeutic agents, in which understanding of interactions between the target and drug ligand is a significant key for this challenge. Structures of proteins involved in the life cycle of the virus have been revealed in RCSB PDB by researchers. In this study, we employed molecular docking study of 4-Acetamido-3-nitrobenzoic acid (ANBA) with corona virus proteins (spike protein, spike binding domain with ACE2 receptor and Main protease, RNA-dependent RNA polymerase). Single crystal X-ray analysis and density functional theory calculations were carried out for ANBA to explore the structural and chemical-reactive parameters. Intermolecular interactions which are involved in the ligand-protein binding process are validated by Hirshfeld surface analysis. To study the behaviour of ANBA in a living organism and to calculate the physicochemical parameters, ADMET analysis was done using SwissADME and Osiris data warrior tools. Further, Toxicity of ANBA was predicted using pkCSM online software. Based on the molecular docking analysis, we introduce here a potent drug molecule that binds to the COVID-19 proteins.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitrobenzoates , RNA, Viral
6.
Int J Biol Macromol ; 181: 540-551, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33766592

ABSTRACT

Biomaterial research has improved the delivery and efficacy of drugs over a wide range of pharmaceutical applications. The objective of this study was to synthesize benzodioxane coupled piperazine decorated chitosan silver nanoparticle (Bcp*C@AgNPs) against methicillin-resistant Staphylococcus aureus (MRSA) and to assess the nanoparticle as an effective candidate for antibacterial and anti-biofilm care. Antibacterial activity of the compound was examined and minimum inhibitory concentration (MIC) was observed at (10.21 ± 0.03 ZOI) a concentration of 200 µg/mL. The Bcp*C@AgNPs interferes with surface adherence of MRSA, suggesting an anti-biofilm distinctive property that is verified for the first time by confocal laser microscopic studies. By ADMET studies the absorption, distribution, metabolism, excretion and toxicity of the compound was examined. The interaction solidity and the stability of the compound when surrounded by water molecules were analyzed by docking and dynamic simulation analysis. The myoblast cell line (L6) was considered for toxicity study and was observed that the compound exhibited less toxic effect. This current research highlights the biocidal efficiency of Bcp*C@AgNPs with their bactericidal and anti-biofilm properties over potential interesting clinical trial targets in future.


Subject(s)
Biofilms/drug effects , Chitosan/chemical synthesis , Dioxanes/pharmacology , Metal Nanoparticles/chemistry , Methicillin-Resistant Staphylococcus aureus/physiology , Molecular Docking Simulation , Molecular Dynamics Simulation , Piperazine/pharmacology , Silver/pharmacology , Animals , Anti-Infective Agents/pharmacology , Cell Line , Chitosan/chemistry , Fluorescence , Ligands , Metal Nanoparticles/ultrastructure , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/ultrastructure , Microbial Sensitivity Tests , Piperazine/chemistry , Plankton/drug effects , Rats , Toxicity Tests
7.
Bioorg Med Chem ; 27(5): 841-850, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30718062

ABSTRACT

Increasing in the alarm against the resistant bacteria due to the failure of antibiotics, thereby the need of more efficiency/potent molecule to treat infections. In the present investigation, series of piperazine derivatives 5(a-l) compounds were synthesized and they were characterised by different spectral techniques such as 1H NMR, 13C NMR, IR and LCMS. A novel copper complex (cPAmPiCaTc) was developed for the first time by using potent analog 5e and characterized by IR and LCMS. The cPAmPiCaTc evaluated for antibacterial activity and showed excellent antimicrobial effect (12 ±â€¯0.08 mm, ZOI) at MIC 20 µg/mL against MRSA compared to standard antibiotics streptomycin and bacitracin at MIC 10 µg/mL. The results show promising anti-staphylococcal action against MRSA which confirmed by membrane damage, bioelectrochemistry, gene regulation (SarA and DHFR), and in silico molecular docking studies. Further, the cPAmPiCaTc also showed excellent blood compatibility and this result pave the way for interesting metallodrug therapeutics in future against MRSA infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Copper/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Piperazines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Bacitracin/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Gene Expression Regulation/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Piperazines/chemical synthesis , Piperazines/metabolism , Protein Binding , Streptomycin/pharmacology , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
8.
Bioorg Chem ; 85: 325-336, 2019 04.
Article in English | MEDLINE | ID: mdl-30658232

ABSTRACT

In the scientific field, nanotechnology has offered multipurpose and designated functional nanoparticles (NPs) for the development of applications in nano-medicine. This present review focuses on cutting edge of nanotechnology in biomedical applications as drug carries in cancer treatment. The nanotechnology overcomes several limitations of drug delivery systems used in distinct therapeutic approaches of cancer treatment. The serious effect of conventional chemotherapeutics by nonspecific targeting, the lack of solubility, and the inability of chemotherapeutics entry to cancer cells which, offers a great opportunity for nanotechnology to play significant roles in cancer biology. The selective delivery of nano-drugs to the targeted cancer cells by the programmed way and avoiding nonspecific interactions to the healthy cells. The present review focuses on the methods of improving the size, shape and characteristics of nanomaterials which can be exploited for cancer therapy. The successful designing of nanocarriers can be tailored for cancer treatment for upcoming future as nano-medicines.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Carriers/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Drug Liberation , Humans
9.
Microb Pathog ; 127: 106-115, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30503959

ABSTRACT

The synthesized potent piperazine analog ChDiPiCa was characterised by various spectroscopic techniques and for the first time evaluated functional membrane microdomain (FMM) disassembly in methicillin-resistant Staphylococcus aureus (MRSA). The ChDiPiCa showed excellent in vitro biocidal activity against MRSA at 26 µg/mL compared to the antibiotic streptomycin and bacitracin 14 µg/mL and 13 µg/mL at 10 µg concentration respectively. The membrane damaging property was confirmed by the SEM analysis. Further, we addressed the new approach for the first time to overcome antibiotic resistance of MRSA through membrane microdomain miss loading to lipids. By which, the ChDiPiCa confirms the significant activity in miss loading of FMM of MRSA which is validated by the fatty acid profile and lipid analysis. The result shows that, altered saturated (Lauric acid and Myristic acid), mono unsaturated (Oleic acid), and poly unsaturated (Linoleic acid and Linolenic acid) fatty acids and hypothesises, altered the membrane functional lipids. For the better understanding of miss loading of FMM by the ChDiPiCa, the in-silico molecular docking studies was analyzed and confirmed the predicted role. This suggests the way to develop ChDiPiCa in medicinal chemistry as anti-MRSA candidates and also this report opens up new window to treat microbial pathogens and infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/metabolism , Piperazine/pharmacology , Anti-Bacterial Agents/chemical synthesis , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Lipid Metabolism/drug effects , Methicillin-Resistant Staphylococcus aureus/ultrastructure , Microscopy, Electron, Scanning , Molecular Docking Simulation , Piperazine/analogs & derivatives , Piperazine/chemical synthesis
10.
Medchemcomm ; 9(4): 713-724, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-30108962

ABSTRACT

Natural products are important leads in drug discovery. The search for effective plant-derived agents or their synthetic analogues has continued to be of interest to biologists and chemists for a long time. Herein, we have synthesized a novel compound, P1C, and P1C-Tit*CAgNPs from chitosan; P1C is a precursor and an anti-inflammatory candidate, which has been validated by molecular docking studies. The synthesized P1C-Tit*CAgNPs showed monodisperse, spherical, and cationic nature and antioxidant properties, protecting destabilization of the erythrocyte membrane by the azo compound 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH); the involvement of NPs as a protective agent for biomolecules, such as DNA and protein, followed by the treatment of NPs with AAPH was confirmed. The inhibition of cellular damage and leakage of cellular inflammatory agents was confirmed by AFM, SEM, TEM, SDS-PAGE, LDH, and PLA2 enzyme inhibition via in vitro studies. The anti-inflammatory property of P1C was further validated by in silico molecular docking studies and showed that, the P1C best pose aligned to PLA2 compared to standard drug. The significant anticancer property of P1C-Tit*CAgNPs was confirmed against MCF7, U373, and C6 cancer cell lines. Thus, the present study highlights the synthesized P1C in P1C-Tit*CAgNPs as a target PLA2-specific anti-inflammatory candidate, and further tuning of small and development-functionalized nanoparticles has a great future in medicine; hence, their clinical applications are warranted.

11.
Microb Pathog ; 123: 275-284, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30041001

ABSTRACT

Bacterial adhesion is a threshold event in the formation of biofilms which leads to serious bacterial diseases. This shows that the underlining the problem is interesting and need to solve the problem of biofilm-related complications. To support this, in the present study, we first time initiated to understand the role of methicillin-resistant Staphylococcus aureus (MRSA) biofilm using previously developed benzodioxane midst piperazine decorated chitosan silver nanoparticles (BP*C@AgNPs). The BP*C@AgNPs studied for antimicrobial, anti-biofilm, biofilm adherence inhibition, the role of ions in biofilm, and an antibiotic cocktail in the treatment of biofilm was assessed. The results showed that, the significant biocidal role of BP*C@AgNPs in controlling the MRSA biofilm and interaction of biofilm protein to calcium ions were significantly decreased. This confirms that calcium ion involved in the biofilm formation and for the treatment of BP*C@AgNPs, cocktail of enzyme and antibiotic have the promising therapeutic value was observed. In future the locking of biofilm protein and its expression in presence of calcium ion was interesting, and greater application related to biofilm infection was warrantable.


Subject(s)
Biofilms/drug effects , Metal Nanoparticles/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Silver/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacterial Adhesion/drug effects , Benzodioxoles , Binding Sites , Calcium/metabolism , Chitosan , Drug Combinations , Endopeptidase K/pharmacology , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Virulence/drug effects
12.
Microb Pathog ; 123: 339-347, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30057355

ABSTRACT

The Staphylococcus aureus biofilm-associated burden is challenging to the field of medicine to eradicate or avoid it. Even though a number of S. aureus biofilm mechanisms understood and established the possible ways of biofilm formation but, still need to know more and require a development of new therapeutic strategies. In this viewpoint, we discuss the underlining biofilm mechanism, its existing systems as active therapeutic agents and as vehicles to transport drugs to the site of infection. The step-back in drug development is due to the emergence of antibiotic-resistant S. aureus. The understanding of bacteria/biofilms is an aspect that we likewise summarize for possible drug development for future as medicine against resistant S. aureus was viewed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Development , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/classification , Biofilms/growth & development , Drug Discovery , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/physiology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity
13.
Int J Biol Macromol ; 108: 489-502, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29225179

ABSTRACT

Nanoparticles (NPs) are currently being investigated along with the use of biodegradable polymer containing active agents in many areas of medicine for targeted applications. The present study was aimed to synthesize novel compound Benzodioxane midst piperazine (BP) and characterization of a BP decorated chitosan silver nanoparticles (BP*C@AgNPs) and shown effective against hazardous pathogens, and also having anti-inflammatory property. It was further evaluated for molecular docking proofs, and toxicity. The BP*C@AgNPs had spherical shape with size of 36.6nm with wide biocidal activity against hazardous Gram-positive and Gram-negative bacteria with excellent inhibition at 100µg/mL for S. aureus (10.08±0.05mm ZOI), and E. coli (10.03±0.04mm ZOI) compared to antibiotic Streptomycin. The anti-inflammatory activity exhibited IC50 value of 71.61±1.05µg/mL for BP*C@AgNPs compared to indomethacin (IC50=40.15±1.21µg/mL). Also, the docking study of BP showed excellent score for COX1 and DNA gyrase. This in silico study confirmed the achieved efficacy of BP, with less toxicity against normal PMBCs in vitro and in vivo studies. This study concludes that, the novel synthesized BP*C@AgNPs had excellent biocidal property and as anti-inflammatory candidate revealed by docking studies, it confirms BP*C@AgNPs for first-class therapeutic applications in the area of medicinal nanotechnology for the coming days.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/chemistry , Chitosan , Metal Nanoparticles/chemistry , Piperazines/chemistry , Silver , Animals , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Bacteria/drug effects , Bacteria/ultrastructure , Chitosan/chemistry , Metal Nanoparticles/ultrastructure , Mice , Microbial Sensitivity Tests , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxidative Stress/drug effects , Piperazine , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...