Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Brain Commun ; 5(1): fcac335, 2023.
Article in English | MEDLINE | ID: mdl-36632189

ABSTRACT

Mutations in any one of the four subunits (ɛ4, ß4, µ4 and σ4) comprising the adaptor protein Complex 4 results in a complex form of hereditary spastic paraplegia, often termed adaptor protein Complex 4 deficiency syndrome. Deficits in adaptor protein Complex 4 complex function have been shown to disrupt intracellular trafficking, resulting in a broad phenotypic spectrum encompassing severe intellectual disability and progressive spastic paraplegia of the lower limbs in patients. Here we report the presence of neuropathological hallmarks of adaptor protein Complex 4 deficiency syndrome in a clustered regularly interspaced short palindromic repeats-mediated Ap4b1-knockout mouse model. Mice lacking the ß4 subunit, and therefore lacking functional adaptor protein Complex 4, have a thin corpus callosum, enlarged lateral ventricles, motor co-ordination deficits, hyperactivity, a hindlimb clasping phenotype associated with neurodegeneration, and an abnormal gait. Analysis of autophagy-related protein 9A (a known cargo of the adaptor protein Complex 4 in these mice shows both upregulation of autophagy-related protein 9A protein levels across multiple tissues, as well as a striking mislocalization of autophagy-related protein 9A from a generalized cytoplasmic distribution to a marked accumulation in the trans-Golgi network within cells. This mislocalization is present in mature animals but is also in E15.5 embryonic cortical neurons. Histological examination of brain regions also shows an accumulation of calbindin-positive spheroid aggregates in the deep cerebellar nuclei of adaptor protein Complex 4-deficient mice, at the site of Purkinje cell axonal projections. Taken together, these findings show a definitive link between loss-of-function mutations in murine Ap4b1 and the development of symptoms consistent with adaptor protein Complex 4 deficiency disease in humans. Furthermore, this study provides strong evidence for the use of this model for further research into the aetiology of adaptor protein Complex 4 deficiency in humans, as well as its use for the development and testing of new therapeutic modalities.

2.
Life Sci Alliance ; 5(8)2022 08.
Article in English | MEDLINE | ID: mdl-35440492

ABSTRACT

Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity. DNA damage and genome instability have been linked to a range of neurodegenerative diseases. The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. Instability in rDNA has been associated with cancer, premature ageing syndromes, and a number of neurodegenerative disorders. Here, we report that SMN-deficient cells exhibit increased rDNA damage leading to impaired ribosomal RNA synthesis and translation. We also unravel an interaction between SMN and RNA polymerase I. Moreover, we uncover an spinal muscular atrophy motor neuron-specific deficiency of DDX21 protein, which is required for resolving R-loops in the nucleolus. Taken together, our findings suggest a new role of SMN in rDNA integrity.


Subject(s)
Motor Neurons , Muscular Atrophy, Spinal , DEAD-box RNA Helicases/metabolism , DNA Damage/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Humans , Infant , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Ribosomes/genetics , Ribosomes/metabolism
3.
Aging Cell ; 20(1): e13281, 2021 01.
Article in English | MEDLINE | ID: mdl-33314575

ABSTRACT

Astrocytes are highly specialised cells, responsible for CNS homeostasis and neuronal activity. Lack of human in vitro systems able to recapitulate the functional changes affecting astrocytes during ageing represents a major limitation to studying mechanisms and potential therapies aiming to preserve neuronal health. Here, we show that induced astrocytes from fibroblasts donors in their childhood or adulthood display age-related transcriptional differences and functionally diverge in a spectrum of age-associated features, such as altered nuclear compartmentalisation, nucleocytoplasmic shuttling properties, oxidative stress response and DNA damage response. Remarkably, we also show an age-related differential response of induced neural progenitor cells derived astrocytes (iNPC-As) in their ability to support neurons in co-culture upon pro-inflammatory stimuli. These results show that iNPC-As are a renewable, readily available resource of human glia that retain the age-related features of the donor fibroblasts, making them a unique and valuable model to interrogate human astrocyte function over time in human CNS health and disease.


Subject(s)
Astrocytes/metabolism , Fibroblasts/metabolism , Aging , Central Nervous System , Humans
4.
Neuroscience ; 390: 46-59, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30056117

ABSTRACT

The insulin/insulin-like growth factor 1 (IGF1) signaling pathways are implicated in longevity and in progression of Alzheimer's disease. Previously, we showed that insulin-like growth factor 1 receptor (IGF1R) and downstream signaling transcripts are reduced in astrocytes in human brain with progression of Alzheimer's neuropathology and developed a model of IGF1 signaling impairment in human astrocytes using an IGF1R-specific monoclonal antibody, MAB391. Here, we have established a novel human astrocyte-neuron co-culture system to determine whether loss of astrocytic IGF1R affects their support for neurons. Astrocyte-neuron co-cultures were developed using human primary astrocytes and differentiated Lund Human Mesencephalic Cells (LUHMES). Neurite outgrowth assays, performed to measure astrocytic support for neurons, showed astrocytes provided contact-mediated support for neurite outgrowth. Loss of IGF1R did not affect neurite outgrowth under control conditions but when challenged with hydrogen peroxide IGF1R-impaired astrocytes were less able to protect LUHMES. To determine how loss of IGF1R affects neuronal support MAB391-treated astrocytes were FACS sorted from GFP-LUHMES and their transcriptomic profile was investigated using microarrays. Changes in transcripts involved in astrocyte energy metabolism were identified, particularly NDUFA2 and NDUFB6, which are related to complex I assembly. Loss of complex I activity in MAB391-treated astrocytes validated these findings. In conclusion, reduced IGF1 signaling in astrocytes impairs their support for neurons under conditions of stress and this is associated with defects in the mitochondrial respiratory chain in astrocytes.


Subject(s)
Astrocytes/metabolism , Electron Transport Complex I/metabolism , Neurons/metabolism , Receptors, Somatomedin/metabolism , Antibodies, Monoclonal/administration & dosage , Coculture Techniques/methods , Energy Metabolism , Humans , Neuronal Outgrowth , Oxidative Stress , Primary Cell Culture , Receptor, IGF Type 1 , Receptors, Somatomedin/immunology , Transcriptome
5.
Mol Ther Methods Clin Dev ; 9: 81-89, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29552580

ABSTRACT

Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease. SMA is caused by mutations in the survival motor neuron gene (SMN1), leading to reduced levels of SMN protein in the CNS. The actin-binding protein plastin 3 (PLS3) has been reported as a modifier for SMA, making it a potential therapeutic target. Here, we show reduced levels of PLS3 protein in the brain and spinal cord of a mouse model of SMA. Our study also revealed that lentiviral-mediated PLS3 expression restored axonal length in cultured Smn-deficient motor neurons. Delivery of adeno-associated virus serotype 9 (AAV9) harboring Pls3 cDNA via cisterna magna in SMNΔ7 mice, a widely used animal model of SMA, led to high neuronal transduction efficiency. PLS3 treatment allowed a small but significant increase of lifespan by 42%. Although there was no improvement of phenotype, this study has demonstrated the potential use of Pls3 as a target for gene therapy, possibly in combination with other disease modifiers.

6.
Sci Rep ; 7(1): 14766, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116194

ABSTRACT

Adeno-associated viruses (AAVs) are attractive gene therapy vectors due to their low toxicity, high stability, and rare integration into the host genome. Expressing ligands on the viral capsid can re-target AAVs to new cell types, but limited sites have been identified on the capsid that tolerate a peptide insertion. Here, we incorporated a site-specific tetracysteine sequence into the AAV serotype 9 (AAV9) capsid, to permit labelling of viral particles with either a fluorescent dye or biotin. We demonstrate that fluorescently labelled particles are detectable in vitro, and explore the utility of the method in vivo in mice with time-lapse imaging. We exploit the biotinylated viral particles to generate two distinct AAV interactomes, and identify several functional classes of proteins that are highly represented: actin/cytoskeletal protein binding, RNA binding, RNA splicing/processing, chromatin modifying, intracellular trafficking and RNA transport proteins. To examine the biological relevance of the capsid interactome, we modulated the expression of two proteins from the interactomes prior to AAV transduction. Blocking integrin αVß6 receptor function reduced AAV9 transduction, while reducing histone deacetylase 4 (HDAC4) expression enhanced AAV transduction. Our method demonstrates a strategy for inserting motifs into the AAV capsid without compromising viral titer or infectivity.


Subject(s)
Capsid/metabolism , Dependovirus/genetics , Mutation , Optical Imaging/methods , Virion/metabolism , Amino Acid Sequence , Animals , Antigens, Neoplasm , Cell Line, Tumor , Cysteine/metabolism , Genetic Vectors , HEK293 Cells , Histone Deacetylases , Humans , Integrins/antagonists & inhibitors , Maleimides/chemistry , Mice , Repressor Proteins/antagonists & inhibitors , Sequence Homology, Amino Acid , Transduction, Genetic , Viral Proteins/chemistry , Viral Proteins/metabolism
7.
Nat Neurosci ; 20(9): 1225-1235, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28714954

ABSTRACT

Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks. We reveal that defective ATM-mediated DNA repair is a consequence of P62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signaling. Virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the mouse central nervous system increases double strand breaks and ATM defects and triggers neurodegeneration. These findings identify R-loops, double strand breaks and defective ATM-mediated repair as pathological consequences of C9orf72 expansions and suggest that C9orf72-linked neurodegeneration is driven at least partly by genomic instability.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Chromosome Breakage , DNA Repair/physiology , DNA Repeat Expansion/physiology , Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , C9orf72 Protein , Cells, Cultured , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Proteins/metabolism , Random Allocation , Rats , Spinal Cord/metabolism , Spinal Cord/pathology
8.
Nat Commun ; 8: 16063, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28677678

ABSTRACT

Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How repeat transcripts get exported from the nucleus is unknown. Here, we show that depletion of the nuclear export adaptor SRSF1 prevents neurodegeneration and locomotor deficits in a Drosophila model of C9ORF72-related disease. This intervention suppresses cell death of patient-derived motor neuron and astrocytic-mediated neurotoxicity in co-culture assays. We further demonstrate that either depleting SRSF1 or preventing its interaction with NXF1 specifically inhibits the nuclear export of pathological C9ORF72 transcripts, the production of dipeptide-repeat proteins and alleviates neurotoxicity in Drosophila, patient-derived neurons and neuronal cell models. Taken together, we show that repeat RNA-sequestration of SRSF1 triggers the NXF1-dependent nuclear export of C9ORF72 transcripts retaining expanded hexanucleotide repeats and reveal a novel promising therapeutic target for neuroprotection.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Frontotemporal Dementia/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , RNA-Binding Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism , Adult , Aged , Amyotrophic Lateral Sclerosis/etiology , Animals , Astrocytes/physiology , Cell Line , Coculture Techniques , Disease Models, Animal , Drosophila , Female , Frontotemporal Dementia/etiology , Humans , Male , Mice , Middle Aged , Nuclear Proteins/metabolism , Rats , Transcription Factors/metabolism
9.
JCI Insight ; 1(11): e87908, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27699224

ABSTRACT

The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell-derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9-UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA.


Subject(s)
Genetic Therapy , Muscular Atrophy, Spinal/therapy , Ubiquitin-Activating Enzymes/genetics , Animals , Gene Knockdown Techniques , Homeostasis , Humans , Mice , Mice, Knockout , Motor Neurons/cytology , Zebrafish
10.
Acta Neuropathol Commun ; 4(1): 66, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27357212

ABSTRACT

Dementia with Lewy bodies (DLB) patients frequently experience well formed recurrent complex visual hallucinations (RCVH). This is associated with reduced blood flow or hypometabolism on imaging of the primary visual cortex. To understand these associations in DLB we used pathological and biochemical analysis of the primary visual cortex to identify changes that could underpin RCVH. Alpha-synuclein or neurofibrillary tangle pathology in primary visual cortex was essentially absent. Neurone density or volume within the primary visual cortex in DLB was also unchanged using unbiased stereology. Microarray analysis, however, demonstrated changes in neuropeptide gene expression and other markers, indicating altered GABAergic neuronal function. Calcium binding protein and GAD65/67 immunohistochemistry showed preserved interneurone populations indicating possible interneurone dysfunction. This was demonstrated by loss of post synaptic GABA receptor markers including gephyrin, GABARAP, and Kif5A, indicating reduced GABAergic synaptic activity. Glutamatergic neuronal signalling was also altered with vesicular glutamate transporter protein and PSD-95 expression being reduced. Changes to the primary visual cortex in DLB indicate that reduced GABAergic transmission may contribute to RCVH in DLB and treatment using targeted GABAergic modulation or similar approaches using glutamatergic modification may be beneficial.


Subject(s)
Hallucinations/metabolism , Lewy Body Disease/metabolism , Visual Cortex/metabolism , gamma-Aminobutyric Acid/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Enzyme-Linked Immunosorbent Assay , Hallucinations/etiology , Hallucinations/pathology , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Lewy Body Disease/complications , Lewy Body Disease/pathology , Microarray Analysis , Neurons/metabolism , Neurons/pathology , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Visual Cortex/pathology , alpha-Synuclein/metabolism , tau Proteins/metabolism
11.
Hum Gene Ther ; 25(7): 575-86, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24845847

ABSTRACT

Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.


Subject(s)
Genetic Diseases, Inborn/therapy , Genetic Therapy/methods , Muscular Atrophy, Spinal/therapy , Mutation , Survival of Motor Neuron 1 Protein/genetics , Animals , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/physiopathology , Genetic Therapy/trends , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...