Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(6): A31-A36, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36821297

ABSTRACT

We demonstrate a newly designed, to the best of our knowledge, hollow optical fiber coupler for a mid-infrared (IR) laser heterodyne spectrometer that mixes a targeted light source with local oscillator (LO) light. The hollow fiber achieves a high transmission efficiency ∼80-90%/m, not only for a coherent laser source but also for an incoherent blackbody source. The branching characteristics of the hollow optical fiber coupler are found to be strongly dependent on the curvature and length of the input port fiber, indicating that the branching ratio could be designed independently for each input port. Our laboratory measurements demonstrate that the branching ratio and transmittance of the coupler can be varied by coupling a flexible fiber to the input side owing to the excitation of higher-order modes. Using the hollow optical fiber coupler, a high-resolution emission spectrum of the quantum cascade laser at 10.3 µm for our C O 2 laser-based heterodyne spectrometer is successfully achieved. Using a C O 2 laser with a hollow fiber and a blackbody as a direct input signal in free space, we obtain the sensitivity performance of IR laser heterodyne spectrometer as 2000-3000 K of the system noise temperature. This suggests that the transmission of a coherent LO laser through a hollow optical fiber has almost the same sensitivity for the IR heterodyne detection as that without a fiber.

2.
Phys Rev Lett ; 127(24): 245101, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34951776

ABSTRACT

Using a novel wave-particle interaction analysis, we show observational evidence of energy transfer from fast magnetosonic waves (MSWs) to low-energy protons in the magnetosphere. The analysis clearly indicates that the transferred proton energies are further converted to excite electromagnetic ion cyclotron waves. Since MSWs are excited by hot ions, cross-energy coupling of ions occurs through MSWs. The result also suggests a new energy transfer path of exciting electromagnetic ion cyclotron waves in the magnetosphere, and a complex interplay between various wave modes and particle populations.

3.
Sci Rep ; 11(1): 13480, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34188084

ABSTRACT

A study using Arase data gives the first observational evidence that the frequency drift of electromagnetic ion cyclotron (EMIC) waves is caused by cyclotron trapping. EMIC emissions play an important role in planetary magnetospheres, causing scattering loss of radiation belt relativistic electrons and energetic protons. EMIC waves frequently show nonlinear signatures that include frequency drift and amplitude enhancements. While nonlinear growth theory has suggested that the frequency change is caused by nonlinear resonant currents owing to cyclotron trapping of the particles, observational evidence for this has been elusive. We survey the wave data observed by Arase from March, 2017 to September 2019, and find the best falling tone emission event, one detected on 11th November, 2017, for the wave particle interaction analysis. Here, we show for the first time direct evidence of the formation of a proton hill in phase space indicating cyclotron trapping. The associated resonance currents and the wave growth of a falling tone EMIC wave are observed coincident with the hill, as theoretically predicted.

4.
Sci Rep ; 11(1): 1610, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33462252

ABSTRACT

Bright, discrete, thin auroral arcs are a typical form of auroras in nightside polar regions. Their light is produced by magnetospheric electrons, accelerated downward to obtain energies of several kilo electron volts by a quasi-static electric field. These electrons collide with and excite thermosphere atoms to higher energy states at altitude of ~ 100 km; relaxation from these states produces the auroral light. The electric potential accelerating the aurora-producing electrons has been reported to lie immediately above the ionosphere, at a few altitudes of thousand kilometres1. However, the highest altitude at which the precipitating electron is accelerated by the parallel potential drop is still unclear. Here, we show that active auroral arcs are powered by electrons accelerated at altitudes reaching greater than 30,000 km. We employ high-angular resolution electron observations achieved by the Arase satellite in the magnetosphere and optical observations of the aurora from a ground-based all-sky imager. Our observations of electron properties and dynamics resemble those of electron potential acceleration reported from low-altitude satellites except that the acceleration region is much higher than previously assumed. This shows that the dominant auroral acceleration region can extend far above a few thousand kilometres, well within the magnetospheric plasma proper, suggesting formation of the acceleration region by some unknown magnetospheric mechanisms.

5.
Nat Commun ; 10(1): 257, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30651535

ABSTRACT

Chorus waves, among the most intense electromagnetic emissions in the Earth's magnetosphere, magnetized planets, and laboratory plasmas, play an important role in the acceleration and loss of energetic electrons in the plasma universe through resonant interactions with electrons. However, the spatial evolution of the electron resonant interactions with electromagnetic waves remains poorly understood owing to imaging difficulties. Here we provide a compelling visualization of chorus element wave-particle interactions in the Earth's magnetosphere. Through in-situ measurements of chorus waveforms with the Arase satellite and transient auroral flashes from electron precipitation events as detected by 100-Hz video sampling from the ground, Earth's aurora becomes a display for the resonant interactions. Our observations capture an asymmetric spatial development, correlated strongly with the amplitude variation of discrete chorus elements. This finding is not theoretically predicted but helps in understanding the rapid scattering processes of energetic electrons near the Earth and other magnetized planets.

6.
Nature ; 434(7037): 1110-1, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-15858568

ABSTRACT

The massive flare of 27 December 2004 from the soft gamma-ray repeater SGR 1806-20, a possible magnetar, saturated almost all gamma-ray detectors, meaning that the profile of the pulse was poorly characterized. An accurate profile is essential to determine physically what was happening at the source. Here we report the unsaturated gamma-ray profile for the first 600 ms of the flare, with a time resolution of 5.48 ms. The peak of the profile (of the order of 10(7) photons cm(-2) s(-1)) was reached approximately 50 ms after the onset of the flare, and was then followed by a gradual decrease with superposed oscillatory modulations possibly representing repeated energy injections with approximately 60-ms intervals. The implied total energy is comparable to the stored magnetic energy in a magnetar (approximately 10(47) erg) based on the dipole magnetic field intensity (approximately 10(15) G), suggesting either that the energy release mechanism was extremely efficient or that the interior magnetic field is much stronger than the external dipole field.

SELECTION OF CITATIONS
SEARCH DETAIL
...