Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transplant Proc ; 55(4): 1005-1011, 2023 May.
Article in English | MEDLINE | ID: mdl-37117106

ABSTRACT

BACKGROUND: Even though transplantation is an essential treatment with no viable alternatives, a significant worldwide donor shortage persists. In this study, we assessed the metabolism of livers that underwent extended periods of circulatory death and subsequently conducted functional validation through transplantation to explore the feasibility of using livers from an uncontrolled donor after circulatory death (u-DCD). METHODS: A donor model simulating u-DCD was constructed using pigs. The prolonged warm ischemia time (WIT) was set to 60, 120, and 180 minutes, and the liver function was evaluated after 24 hours of perfusion using an originally developed normothermic perfusion system. Based on the results, functional confirmation by transplantation was performed on the 2 groups with prolonged WIT of 60 and 180 minutes. RESULTS: Based on the 24-hour perfusion of the liver alone, we evaluated the function by transplanting the WI 60-minute model and 180-minute model (N = 3 each). Warm ischemia was 73.5 ± 3.7 minutes and 188 ± 3 minutes in the 60-minute model and 180-minute model, respectively. In the model with 60 minutes of WI, one case survived until the endpoint, and 2 cases survived between 8 and 12 hours, whereas, in the model with 180 minutes of WI, they died within 6 hours. CONCLUSION: We constructed a completely uncontrolled circulatory arrest model without anticoagulation and showed the possibility of using u-DCD livers by ex vivo machine perfusion and transplantation.


Subject(s)
Liver Transplantation , Swine , Animals , Liver Transplantation/methods , Organ Preservation/methods , Extracorporeal Circulation , Liver/surgery , Perfusion/methods , Warm Ischemia
2.
Transplant Direct ; 7(7): e712, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34131584

ABSTRACT

Ex vivo perfusion technology has been actively developed to solve the problem of severe donor shortage. In this study, the ex vivo metabolic characteristics of porcine donation after circulatory death (DCD) liver in short-term perfusion using whole or diluted blood were compared with those of the in vivo transplanted state to evaluate their initial response to resuscitation. METHODS: The porcine DCD model was constructed by clamping the thoracic aorta. After 60 min of blood flow cessation, retrieved livers were flushed with 500 mL of heparin saline (20 000 IU/L) followed by perfusion with 500 mL of cold histidine-tryptophan-ketoglutarate solution. The liver grafts were immersed in cold histidine-tryptophan-ketoglutarate solution for 60 min. Subsequently, normothermic ex vivo perfusion was performed with 20 000 IU/L of heparin added to the collected blood (whole blood group) or medium mixed with 10% whole blood (dilution group) for 3 h. Blood from the portal vein, the hepatic artery, and infra hepatica inferior vena cava was collected hourly and metabolomic analyses were performed. The other liver graft was heterotopically transplanted as a control (in vivo group). Each experiment was conducted once. RESULTS: The guanosine levels demonstrated similar fluctuating trends in the whole blood and in vivo groups. In contrast, the levels increased during the perfusion in the diluted blood group. Fluctuations in choline metabolism demonstrated similar trends in the whole blood and in vivo groups. CONCLUSIONS: Ex vivo machine perfusion with whole blood over a short time resulted in a metabolic trend similar to that in the in vivo model. Further studies in this regard are warranted to progress in the utilization of DCD organs.

3.
Transplant Proc ; 53(1): 42-48, 2021.
Article in English | MEDLINE | ID: mdl-32466955

ABSTRACT

BACKGROUND: A pig model has been commonly used for technical training for clinical liver transplantation (LT). However, as the healthy pigs have no shunt bypassing the portal vein (PV), it is necessary to complete LT within 30 minutes after shutting off the PV flow. While a model that uses an ex vivo shunt system has been used to alleviate the constraints of the anhepatic phase, it has been often difficult to keep sufficient blood flow rate and prevent the intestinal congestion because the blood vessels were occluded easily with the suction pressure by using the conventional shunt system. METHODS: We designed a portable shunt system and a novel connector that can prevent the blood vessel from occluding. The system can separately control the flow rate of PV and inferior vena cava (IVC) and detect whether the blood vessels were occluded. By reducing the solution volume in the circuit, the effected blood loss ex vivo could be minimized. The stability of this system was verified with 15 medical doctors in an advanced medical professional education course. RESULTS: The system enabled the blood flow to maintain ≥ 20 mL/minute and prevented the intestinal congestion. The perioperative hemodynamics of the recipient were stable without a blood transfusion using 25 to 40 kg pigs. We confirmed that all LT training were completed, even 60 minutes after shutting off the PV flow. CONCLUSIONS: Our system greatly contributed to training on LT for conducting the survival experiments.


Subject(s)
Liver Transplantation/education , Liver Transplantation/methods , Models, Animal , Portacaval Shunt, Surgical/instrumentation , Portacaval Shunt, Surgical/methods , Animals , Portal Vein/surgery , Swine , Vena Cava, Inferior/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...