Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 8(1): 456-478, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993171

ABSTRACT

Arabinase is an enzyme recognized for its ability to degrade arabinan, a plant cell wall constituent. It has been applied in the food industry most commonly for juice processing. One commercial source of arabinase is Aspergillus tubingensis (A. tubingensis), a black Aspergillus species. Given the intended use in food for human consumption, and noting its potential presence at trace levels in finished products, a series of safety studies including in vitro Ames and chromosome aberration assays, in vivo mammalian erythrocyte micronucleus and alkaline comet assays, and a 90-day rat oral toxicity study were conducted. No test article-related mutagenic activity was observed in the Ames assay. Although positive activity was observed in the chromosome aberration assay, this was not replicated in the in vivo genotoxicity assays including in preabsorptive cells. In the subchronic toxicity study, no test article-related adverse effects were observed following oral administration of arabinase at doses of 15.3, 153, or 1,530 mg total organic solids (TOS)/kg body weight/day to Sprague Dawley rats. The no-observed-adverse-effect level was considered to be the highest dose tested (1,530 mg TOS/kg body weight/day). The results of the genotoxicity studies and the subchronic toxicity study support the safe use of arabinase from A. tubingensis in food production.

2.
Food Chem Toxicol ; 113: 218-227, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29317330

ABSTRACT

Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products.


Subject(s)
Antioxidants/toxicity , Flavonols/toxicity , Food Additives/toxicity , Mutagens/toxicity , Quercetin/analogs & derivatives , Animals , Biological Availability , CHO Cells , Cricetulus , Female , Male , Mice , Mutagenicity Tests , Quercetin/toxicity , Rats , Rats, Sprague-Dawley
3.
Article in English | MEDLINE | ID: mdl-29307374

ABSTRACT

The recent revisions of the Organisation for Economic Co-operation and Development (OECD) genetic toxicology test guidelines emphasize the importance of historical negative controls both for data quality and interpretation. The goal of a HESI Genetic Toxicology Technical Committee (GTTC) workgroup was to collect data from participating laboratories and to conduct a statistical analysis to understand and publish the range of values that are normally seen in experienced laboratories using TK6 cells to conduct the in vitro micronucleus assay. Data from negative control samples from in vitro micronucleus assays using TK6 cells from 13 laboratories were collected using a standard collection form. Although in some cases statistically significant differences can be seen within laboratories for different test conditions, they were very small. The mean incidence of micronucleated cells/1000 cells ranged from 3.2/1000 to 13.8/1000. These almost four-fold differences in micronucleus levels cannot be explained by differences in scoring method, presence or absence of exogenous metabolic activation (S9), length of treatment, presence or absence of cytochalasin B or different solvents used as vehicles. The range of means from the four laboratories using flow cytometry methods (3.7-fold: 3.5-12.9 micronucleated cells/1000 cells) was similar to that from the nine laboratories using other scoring methods (4.3-fold: 3.2-13.8 micronucleated cells/1000 cells). No laboratory could be identified as an outlier or as showing unacceptably high variability. Quality Control (QC) methods applied to analyse the intra-laboratory variability showed that there was evidence of inter-experimental variability greater than would be expected by chance (i.e. over-dispersion). However, in general, this was low. This study demonstrates the value of QC methods in helping to analyse the reproducibility of results, building up a 'normal' range of values, and as an aid to identify variability within a laboratory in order to implement processes to maintain and improve uniformity.


Subject(s)
Cell Nucleus/genetics , Research Design/standards , Cell Line , Humans , Micronuclei, Chromosome-Defective , Micronucleus Tests , Quality Control
4.
Exp Toxicol Pathol ; 69(4): 187-191, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28108073

ABSTRACT

According to the International Conference on Harmonization Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use (ICH S2(R1)), a positive response in any in vitro assay necessitates additional in vivo test(s) (other tissue/endpoint) in addition to the erythrocyte micronucleus test when Option 1 of the test battery is selected. When Option 2 of the test battery is selected, a bacterial gene mutation test and two in vivo tests with different tissues/endpoint are required. The in vivo alkaline comet assay is recommended as the second in vivo test because it can detect a broad spectrum of DNA damage in any tissue and can be combined with the erythrocyte micronucleus test. Considering animal welfare, a combination assay is preferable to an individual assay. Thus, we validated the protocol for the in vivo comet-micronucleus combination assay in rats with three daily administrations and determined the dose of the positive control (ethyl methanesulfonate; EMS, 200mg/kg/day). We also collected the negative control (vehicle) and positive control (EMS) data from the comet (liver, stomach, and kidney) and micronucleus (bone marrow) combination assay using male Sprague Dawley (SD) rats. The negative control data were comparable to our historical control data obtained from stand-alone assays. The positive control data showed clear and consistent positive responses in both endpoints.


Subject(s)
Comet Assay/methods , Micronucleus Tests/methods , Mutagens/toxicity , Animals , Control Groups , Ethyl Methanesulfonate/toxicity , Male , Rats , Rats, Sprague-Dawley
5.
Article in English | MEDLINE | ID: mdl-24548793

ABSTRACT

In anticipation of proposed OECD guideline changes that may include increasing the number of reticulocytes scored for micronuclei, an inter-laboratory reproducibility study of the rat peripheral blood micronucleus assay was performed using flow cytometry. In this experiment, male Sprague-Dawley (SD) rats were treated with the model clastogen cyclophosphamide (CP: 5, 10 or 15mg/kg) by a single oral administration. As controls, rats were treated with physiological saline (solvent) in the same manner as for the model clastogen. Peripheral blood was collected from each rat 48h after the treatment. The blood samples were prepared at the Public Interest Incorporated Foundation, BioSafety Research Center (BSRC) in duplicate using the rat MicroFlow(PLUS) Kit. After fixation, one replicate set of samples was shipped to Litron Laboratories, and each sample was analyzed by flow cytometry at the two laboratories. In addition, the frequency of micronucleated reticulocytes (MNRETs) was determined at the BSRC by microscopic analysis using supravital acridine orange (AO) staining. The reproducibility of micronucleated reticulocyte frequencies analyzed by microscopy and flow cytometry showed good correlation (r(2)=0.84). The frequencies of micronucleated reticulocytes analyzed by flow cytometry at the two independent laboratories showed good concordance (r(2)=0.97). The data indicate that the flow cytometric micronucleus analysis method is a good alternative to manual microscopic analysis. Flow cytometry allows groups to readily score 5000 or even 20,000 RETs in a matter of minutes compared to manual analysis. This results in increased reliability of the assay by achieving better statistical power.


Subject(s)
Flow Cytometry , Laboratories/standards , Micronuclei, Chromosome-Defective/chemically induced , Reticulocytes/drug effects , Toxicity Tests/standards , Animals , Cyclophosphamide/toxicity , Male , Micronuclei, Chromosome-Defective/statistics & numerical data , Mutagens/toxicity , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Reticulocytes/pathology , Sensitivity and Specificity
6.
Methods Mol Biol ; 1044: 179-89, 2013.
Article in English | MEDLINE | ID: mdl-23896877

ABSTRACT

The rodent micronucleus assay has been most widely and frequently used as a representative in vivo assay system to assess mutagenicity of chemicals, regardless of endpoint of mutagenicity. The micronucleus has been developed to assess induction of structural and numerical chromosomal aberrations of target chemical. In this chapter, we describe the standard protocols of the assay using mouse bone marrow and peripheral blood. These methods are basically applicable to other rodents. The methodology of the micronucleus assay is rapidly developing, especially automatic analysis by flow cytometry (see also Chapter 11 ). Also we have to pay attention to the animal welfare, for example integration into repeat dose toxicity assay, combination of the micronucleus assay and Comet assay, and also omission of concurrent positive control group. Therefore, modification of the standard protocol is necessary for the actual assay on a case-by-case basis.


Subject(s)
Blood Cells/cytology , Blood Cells/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Micronucleus Tests/methods , Animals , Comet Assay , Dose-Response Relationship, Drug , Endpoint Determination , Female , Male , Mice , Microscopy , Toxicity Tests
7.
Regul Toxicol Pharmacol ; 62(1): 1-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22198002

ABSTRACT

Titanium dioxide (TiO2) is widely used as a white pigment in paints, plastics, inks, paper, creams, cosmetics, drugs and foods. In the present study, the genotoxicity of anatase TiO2 nanoparticles was evaluated in vivo using the comet assay after a single or repeated intratracheal instillation in rats. The nanoparticles were instilled intratracheally at a dosage of 1.0 or 5.0 mg/kg body weight (single instillation group) and 0.2 or 1.0 mg/kg body weight once a week for 5 weeks (repeated instillation group) into male Sprague-Dawley rats. A positive control, ethyl methanesulfonate (EMS) at 500 mg/kg, was administered orally 3 h prior to dissection. Histopathologically, macrophages and neutrophils were detected in the alveolus of the lung in the 1.0 and 5.0 mg/kg TiO2 groups. In the comet assay, there was no increase in % tail DNA in any of the TiO2 groups. In the EMS group, there was a significant increase in % tail DNA compared with the negative control group. TiO2 nanoparticles in the anatase crystal phase are not genotoxic following intratracheal instillation in rats.


Subject(s)
Nanoparticles/toxicity , Pneumonia/chemically induced , Titanium/toxicity , Administration, Inhalation , Animals , Comet Assay , Male , Pneumonia/pathology , Rats , Rats, Sprague-Dawley , Toxicity Tests, Acute , Toxicity Tests, Subacute
8.
Mutat Res ; 725(1-2): 57-77, 2011 Oct 09.
Article in English | MEDLINE | ID: mdl-21801851

ABSTRACT

The Bhas 42 cell transformation assay is a sensitive short-term system for predicting chemical carcinogenicity. Bhas 42 cells were established from BALB/c 3T3 cells by the transfection of v-Ha-ras gene and postulated to have acquired an initiated state in the two-stage carcinogenesis theory. The Bhas 42 cell transformation assay is capable of detecting both tumor-initiating and tumor-promoting activities of chemical carcinogens. The full assay protocol consists of two components, the initiation assay and the promotion assay, to detect the initiating activity and the promoting activity, respectively. An international study was carried out to validate this cell transformation assay in which six laboratories from three countries participated. Twelve coded chemicals were examined in total and each chemical was tested by three laboratories. In the initiation assay, concordant results were obtained by three laboratories for eight out of ten chemicals and in the promotion assay, concordant results were achieved for ten of twelve chemicals. The positive results were obtained in all three laboratories with the following chemicals: 2-acetylaminofluorene was positive in both initiation and promotion assays; dibenz[a,h]anthracene was positive in the initiation assay; sodium arsenite, lithocholic acid, cadmium chloride, mezerein and methapyrilene hydrochloride were positive in the promotion assay. o-Toluidin hydrochloride was positive in the both assays in two of the three laboratories. d-Mannitol, caffeine and l-ascorbic acid were negative in both assays in all the laboratories, and anthracene was negative in both assays in two of the three laboratories except one laboratory obtaining positive result in the promotion assay. Consequently, the Bhas 42 cell transformation assay correctly discriminated all six carcinogens and two tumor promoters from four non-carcinogens. Thus, the present study demonstrated that the Bhas 42 cell transformation assay is transferable and reproducible between laboratories and applicable to the prediction of chemical carcinogenicity. In addition, by comparison of the present results with intra-laboratory data previously published, within-laboratory reproducibility using the Bhas 42 cell transformation assay was also confirmed.


Subject(s)
Carcinogenicity Tests/methods , Cell Transformation, Neoplastic , Animals , BALB 3T3 Cells , Cell Line , Genes, ras/genetics , Mice , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...