Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(26): 46564-46574, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558608

ABSTRACT

We demonstrate an optical phased-array equipped with a 3D-printed facet-attached element for shaping and deflection of the emitted beam. The beam shaper combines freeform refractive surfaces with total-internal-reflection mirrors and is in-situ printed to edge-emitting waveguide facets using high-resolution multi-photon lithography, thereby ensuring precise alignment with respect to on-chip waveguide structures. In a proof-of-concept experiment, we achieve a grating-lobe free steering range of ±30∘ and a full-width-half-maximum beam divergence of approximately 2∘. The concept opens an attractive alternative to currently used grating structures and is applicable to a wide range of integration platforms.

2.
Opt Lett ; 47(17): 4536-4539, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048698

ABSTRACT

A compact integrated and high-efficiency polarization mode interferometer in the 220-nm silicon-on-insulator platform is presented. Due to the operation with two polarization modes in a single waveguide, low propagation losses and high sensitivities combined with a small footprint are achieved. The designed and fabricated system with a 5-mm-long sensing region shows a measured excess loss of only 1.5 dB with an extinction ratio up to 30 dB, while its simulated homogeneous bulk sensitivity can exceed 8000 rad/RIU. The combination with a 90° hybrid readout system offers single wavelength operation with unambiguousness for phase shifts up to 2π and constant sensitivity.

3.
Opt Express ; 22(1): 839-46, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24515043

ABSTRACT

GeSn (Sn content up to 4.2%) photodiodes with vertical pin structures were grown on thin Ge virtual substrates on Si by a low temperature (160 °C) molecular beam epitaxy. Vertical detectors were fabricated by a double mesa process with mesa radii between 5 µm and 80 µm. The nominal intrinsic absorber contains carrier densities from below 1 · 10(16) cm(-3) to 1 · 10(17) cm(-3) for Ge reference detectors and GeSn detectors with 4.2% Sn, respectively. The photodetectors were investigated with electrical and optoelectrical methods from direct current up to high frequencies (40 GHz). For a laser wavelength of 1550 nm an increasing of the optical responsivities (84 mA/W -218 mA/W) for vertical incidence detectors with thin (300 nm) absorbers as function of the Sn content were found. Most important from an application perspective all detectors had bandwidth above 40 GHz at enough reverse voltage which increased from zero to -5 V within the given Sn range. Increasing carrier densities (up to 1 · 10(17) cm(-3)) with Sn contents caused the depletion of the nominal intrinsic absorber at increasing reverse voltages.


Subject(s)
Germanium/chemistry , Photometry/instrumentation , Semiconductors , Silicon/chemistry , Tin/chemistry , Equipment Design , Equipment Failure Analysis , Germanium/radiation effects , Light , Materials Testing , Microwaves , Silicon/radiation effects , Tin/radiation effects
4.
Opt Express ; 21(2): 2206-11, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23389201

ABSTRACT

In this paper we investigate the influence of n-type doping in Ge light emitting diodes on Si substrates on the room temperature emission spectrum. The layer structures are grown with a special low temperature molecular beam epitaxy process resulting in a slight tensile strain of 0.13%. The Ge LED's show a dominant direct bandgap emission with shrinking bandgap at the Γ point in dependence of n-type doping level. The emission shift (38 meV at 10²°cm⁻³) is mainly assigned to bandgap narrowing at high doping. The electroluminescence intensity increases with doping concentrations up to 3x10¹9cm⁻³ and decreases sharply at higher doping levels. The integrated direct gap emission intensity increases superlinear with electrical current density. Power exponents vary from about 2 at low doping densities up to 3.6 at 10²°cm⁻³ doping density.


Subject(s)
Germanium/chemistry , Lighting/instrumentation , Semiconductors , Silicon/chemistry , Equipment Design , Equipment Failure Analysis , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...