Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 118(4): 1491-1510, 2021 04.
Article in English | MEDLINE | ID: mdl-33404064

ABSTRACT

This paper reports the first implementation of a new type of mass spectral library for the analysis of Chinese hamster ovary (CHO) cell metabolites that allows users to quickly identify most compounds in any complex metabolite sample. We also describe an annotation methodology developed to filter out artifacts and low-quality spectra from recurrent unidentified spectra of metabolites. CHO cells are commonly used to produce biological therapeutics. Metabolic profiles of CHO cells and media can be used to monitor process variability and look for markers that discriminate between batches of product. We have created a comprehensive library of both identified and unidentified metabolites derived from CHO cells that can be used in conjunction with tandem mass spectrometry to identify metabolites. In addition, we present a workflow that can be used for assigning confidence to a NIST MS/MS Library search match based on prior probability of general utility. The goal of our work is to annotate and identify (when possible), all liquid chromatography-mass spectrometry generated metabolite ions as well as create automatable library building and identification pipelines for use by others in the field.


Subject(s)
Metabolome , Metabolomics , Small Molecule Libraries , Animals , CHO Cells , Cricetulus , Culture Media/chemistry
2.
Leukemia ; 34(1): 35-49, 2020 01.
Article in English | MEDLINE | ID: mdl-31439943

ABSTRACT

Pediatric T cell acute lymphoblastic leukemia (T-ALL) cells frequently contain mutations in the interleukin-7 (IL-7) receptor pathway or respond to IL-7 itself. To target the IL-7 receptor on T-ALL cells, murine monoclonal antibodies (MAbs) were developed against the human IL-7Rα chain and chimerized with human IgG1 constant regions. Crystal structures demonstrate that the two MAbs bound different IL-7Rα epitopes. The MAbs mediated antibody-dependent cell-mediated cytotoxicity (ADCC) against patient-derived xenograft (PDX) T-ALL cells, which was improved by combining two MAbs. In vivo, the MAbs showed therapeutic efficacy via ADCC-dependent and independent mechanisms in minimal residual and established disease. PDX T-ALL cells that relapsed following a course of chemotherapy displayed elevated IL-7Rα, and MAb treatment is effective against relapsing disease, suggesting the use of anti-IL7Rα MAbs in relapsed T-ALL patients or patients that do not respond to chemotherapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Interleukin-7/antagonists & inhibitors , Animals , Antibody-Dependent Cell Cytotoxicity/drug effects , Humans , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Xenograft Model Antitumor Assays
3.
MAbs ; 10(7): 992-1002, 2018 10.
Article in English | MEDLINE | ID: mdl-30060704

ABSTRACT

The widespread use of monoclonal antibodies (mAbs) as a platform for therapeutic drug development in the pharmaceutical industry has led to an increased interest in robust experimental approaches for assessment of mAb structure, stability and dynamics. The ability to enrich proteins with stable isotopes is a prerequisite for the in-depth application of many structural and biophysical methods, including nuclear magnetic resonance (NMR), small angle neutron scattering, neutron reflectometry, and quantitative mass spectrometry. While mAbs can typically be produced with very high yields using mammalian cell expression, stable isotope labeling using cell culture is expensive and often impractical. The most common and cost-efficient approach to label proteins is to express proteins in Escherichia coli grown in minimal media; however, such methods for mAbs have not been reported to date. Here we present, for the first time, the expression and purification of a stable isotope labeled mAb from a genetically engineered E. coli strain capable of forming disulfide bonds in its cytoplasm. It is shown using two-dimensional NMR spectral fingerprinting that the unlabeled mAb and the mAb singly or triply labeled with 13C, 15N, 2H are well folded, with only minor structural differences relative to the mammalian cell-produced mAb that are attributed to the lack of glycosylation in the Fc domain. This advancement of an E. coli-based mAb expression platform will facilitate the production of mAbs for in-depth structural characterization, including the high resolution investigation of mechanisms of action.


Subject(s)
Antibodies, Monoclonal/chemistry , Biological Therapy , Escherichia coli/genetics , Isotope Labeling/methods , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Carbon Isotopes/chemistry , Gene Expression , Glycosylation , Humans , Immunosorbent Techniques , Magnetic Resonance Spectroscopy , Mass Spectrometry
4.
MAbs ; 10(6): 922-933, 2018.
Article in English | MEDLINE | ID: mdl-29958062

ABSTRACT

The successful development and regulatory approval of originator and biosimilar therapeutic proteins requires a systems approach to upstream and downstream processing as well as product characterization and quality control. Innovation in process design and control, product characterization strategies, and data integration represent an ecosystem whose concerted advancement may reduce time-to-market and further improve comparability and biosimilarity programs. The biopharmaceutical community has made great strides to this end, yet there currently exists no pre-competitive monoclonal antibody (mAb) expression platform for open innovation. Here, we describe the development and initial expression of an intended copy of the NISTmAb using three non-originator murine cell lines. It was found that, without optimization and in culture flasks, all three cell lines produce approximately 100 mg mAb per liter of culture. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, nuclear magnetic resonance spectroscopy, intact mass spectrometry, and surface plasmon resonance were used to demonstrate that the products of all three cell lines embody quality attributes with a sufficient degree of sameness to the NISTmAb Reference Material 8671 to warrant further bioreactor studies, process improvements and optimization. The implications of the work with regard to pre-competitive innovation to support process design and feedback control, comparability and biosimilarity assessments, and process analytical technologies are discussed.


Subject(s)
Antibodies, Monoclonal/chemistry , Biosimilar Pharmaceuticals/chemistry , Immunoglobulin G/chemistry , Recombinant Proteins/chemistry , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Biosimilar Pharmaceuticals/standards , Cell Line , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Humans , Magnetic Resonance Spectroscopy , Quality Control , Recombinant Proteins/standards , Reference Standards , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...