Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
N Engl J Med ; 390(12): 1105-1117, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38507753

ABSTRACT

BACKGROUND: Autoantibodies against interleukin-12 (anti-interleukin-12) are often identified in patients with thymoma, but opportunistic infections develop in only some of these patients. Interleukin-12 (with subunits p40 and p35) shares a common subunit with interleukin-23 (subunits p40 and p19). In a patient with disseminated Burkholderia gladioli infection, the identification of both anti-interleukin-23 and anti-interleukin-12 prompted further investigation. METHODS: Among the patients (most of whom had thymoma) who were known to have anti-interleukin-12, we screened for autoantibodies against interleukin-23 (anti-interleukin-23). To validate the potential role of anti-interleukin-23 with respect to opportunistic infection, we tested a second cohort of patients with thymoma as well as patients without either thymoma or known anti-interleukin-12 who had unusual infections. RESULTS: Among 30 patients with anti-interleukin-12 who had severe mycobacterial, bacterial, or fungal infections, 15 (50%) also had autoantibodies that neutralized interleukin-23. The potency of such neutralization was correlated with the severity of these infections. The neutralizing activity of anti-interleukin-12 alone was not associated with infection. In the validation cohort of 91 patients with thymoma, the presence of anti-interleukin-23 was associated with infection status in 74 patients (81%). Overall, neutralizing anti-interleukin-23 was detected in 30 of 116 patients (26%) with thymoma and in 30 of 36 patients (83%) with disseminated, cerebral, or pulmonary infections. Anti-interleukin-23 was present in 6 of 32 patients (19%) with severe intracellular infections and in 2 of 16 patients (12%) with unusual intracranial infections, including Cladophialophora bantiana and Mycobacterium avium complex. CONCLUSIONS: Among patients with a variety of mycobacterial, bacterial, or fungal infections, the presence of neutralizing anti-interleukin-23 was associated with severe, persistent opportunistic infections. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Subject(s)
Autoantibodies , Immunologic Deficiency Syndromes , Interleukin-23 , Opportunistic Infections , Adult , Humans , Autoantibodies/immunology , Immunologic Deficiency Syndromes/immunology , Interleukin-12/antagonists & inhibitors , Interleukin-12/immunology , Interleukin-23/antagonists & inhibitors , Interleukin-23/immunology , Mycoses/immunology , Opportunistic Infections/immunology , Thymoma/immunology , Thymus Neoplasms/immunology , Antibodies, Neutralizing/immunology , Bacterial Infections/immunology
2.
Respir Res ; 23(1): 280, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36221098

ABSTRACT

BACKGROUND: Anti GM-CSF autoantibodies (aAb) have been related to acquired pulmonary alveolar proteinosis (PAP) and described in cases of severe infections such as cryptococcosis and nocardiosis in previously healthy subjects. Whether there are different anti-GM-CSF autoantibodies corresponding to these phenotypes is unclear. Therefore, we examined anti-GM-CSF autoantibodies to determine whether amount or neutralizing activity could distinguish between groups. METHODS: Plasma samples gathered in the National Institute of Health from patients with anti GM-CSF aAb and either PAP (n = 15), cryptococcal meningitis (n = 15), severe nocardiosis (n = 5) or overlapping phenotypes (n = 6) were compared. The relative amount of aAb was assessed using a particle-based approach, reported as a mouse monoclonal anti-human GM-CSF as standard curve and expressed in an arbitrary Mouse Monoclonal Antibody Unit (MMAU). The neutralizing activity of the plasma was assessed by inhibition of GM-CSF-induced intracellular phospho-STAT5 (pSTAT5) in monocytes. RESULTS: Anti-GM-CSF aAb relative amounts were higher in PAP patients compared to those with cryptococcosis (mean 495 ± 464 MMAU vs 197 ± 159 MMAU, p = 0.02); there was no difference with patients with nocardiosis (430 ± 493 MMAU) nor between the two types of infections. The dilution of plasma resulting in 50% inhibition of GM-CSF-induced pSTAT5 (approximate IC50) did not vary appreciably across groups of patients (1.6 ± 3.1%, 3.9 ± 6% and 1.8 ± 2.2% in PAP patients, cryptococcosis and nocardiosis patients, respectively). Nor was the concentration of GM-CSF necessary to induce 50% of maximal GM-CSF-induced pSTAT5 in the presence of 10 MMAU of anti-GM-CSF aAb (EC50). When studying longitudinal samples from patients with PAP or disseminated nocardiosis, the neutralizing effect of anti-GM-CSF aAb was relatively constant over time despite targeted treatments and variations in aAb levels. CONCLUSIONS: Despite different clinical manifestations, anti-GM-CSF antibodies were similar across PAP, cryptococcosis and nocardiosis. Underlying host genetics and functional analyses may help further differentiate the biology of these conditions.


Subject(s)
Cryptococcosis , Meningitis, Cryptococcal , Nocardia Infections , Pulmonary Alveolar Proteinosis , Animals , Antibodies, Monoclonal , Autoantibodies , Mice , Pulmonary Alveolar Proteinosis/diagnosis , STAT5 Transcription Factor
3.
Nat Commun ; 12(1): 5454, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526512

ABSTRACT

Chlamydia trachomatis infection causes severe inflammatory disease resulting in blindness and infertility. The pathophysiology of these diseases remains elusive but myeloid cell-associated inflammation has been implicated. Here we show NLRP3 inflammasome activation is essential for driving a macrophage-associated endometritis resulting in infertility by using a female mouse genital tract chlamydial infection model. We find the chlamydial parasitophorous vacuole protein CT135 triggers NLRP3 inflammasome activation via TLR2/MyD88 signaling as a pathogenic strategy to evade neutrophil host defense. Paradoxically, a consequence of CT135 mediated neutrophil killing results in a submucosal macrophage-associated endometritis driven by ATP/P2X7R induced NLRP3 inflammasome activation. Importantly, macrophage-associated immunopathology occurs independent of macrophage infection. We show chlamydial infection of neutrophils and epithelial cells produce elevated levels of extracellular ATP. We propose this source of ATP serves as a DAMP to activate submucosal macrophage NLRP3 inflammasome that drive damaging immunopathology. These findings offer a paradigm of sterile inflammation in infectious disease pathogenesis.


Subject(s)
Chlamydia Infections/immunology , Chlamydia/immunology , Inflammation/immunology , Myeloid Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Neutrophils/immunology , Receptors, Purinergic P2X7/immunology , Adenosine Triphosphate/immunology , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Chlamydia/physiology , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Disease Models, Animal , Female , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Immune Evasion/immunology , Inflammation/metabolism , Inflammation/microbiology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Myeloid Cells/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/metabolism , Neutrophils/microbiology , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
4.
Cell Immunol ; 356: 104179, 2020 10.
Article in English | MEDLINE | ID: mdl-32763502

ABSTRACT

After T cell receptor (TCR) engagement, the CARD11-Bcl10-Malt1 (CBM) complex oligomerizes to transduce NF-κB activating signals. Bcl10 is then degraded to limit NF-κB activation. The cDNA AK057716 (BinCARD-1) was reported to encode a novel CARD protein that interacts with Bcl10 and modestly inhibits NF-κB activation. In a later study, a second isoform, BinCARD-2, was identified. Here, we report that the cDNA AK057716 (BinCARD-1) is an incompletely spliced derivative of the gene product of C9orf89, whereas CARD19 (BinCARD-2) represents the properly spliced isoform, with conservation across diverse species. Immunoblotting revealed expression of CARD19 in T cells, but no evidence of BinCARD-1 expression, and microscopy demonstrated that endogenous CARD19 localizes to mitochondria. Although we confirmed that both BinCARD-1 and CARD19 can inhibit NF-κB activation and promote Bcl10 degradation when transiently overexpressed in HEK293T cells, loss of endogenous CARD19 expression had little effect on Bcl10-dependent NF-κB activation, activation of Malt1 protease function, or Bcl10 degradation after TCR engagement in primary murine CD8 T cells. Together, these data indicate that the only detectable translated product of C9orf89 is the mitochondrial protein CARD19, which does not play a discernible role in TCR-dependent, Bcl10-mediated signal transduction to Malt1 or NF-κB.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/physiology , Receptors, Antigen, T-Cell/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , CD8-Positive T-Lymphocytes/metabolism , Databases, Genetic , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Jurkat Cells , Mice , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics
5.
Am J Respir Cell Mol Biol ; 58(2): 241-252, 2018 02.
Article in English | MEDLINE | ID: mdl-28915071

ABSTRACT

The incidence of pulmonary nontuberculous mycobacteria (NTM) disease is increasing, but host responses in respiratory epithelium infected with NTM are not fully understood. In this work, we aimed to identify infection-relevant gene expression signatures of NTM infection of the respiratory epithelium. We infected air-liquid interface (ALI) primary respiratory epithelial cell cultures with Mycobacterium avium subsp. avium (MAC) or Mycobacterium abscessus subsp. abscessus (MAB). We used cells from four different donors to obtain generalizable data. Differentiated respiratory epithelial cells at the ALI were infected with MAC or MAB at a multiplicity of infection of 100:1 or 1,000:1, and RNA sequencing was performed at Days 1 and 3 after infection. In response to infection, we found down-regulation of ciliary genes but upregulation of genes associated with cytokines/chemokines, such as IL-32, and cholesterol biosynthesis. Inflammatory response genes tended to be more upregulated by MAB than by MAC infection. Primary respiratory epithelial cell infection with NTM at the ALI identified ciliary function, cholesterol biosynthesis, and cytokine/chemokine production as major host responses to infection. Some of these pathways may be amenable to therapeutic manipulation.


Subject(s)
Cholesterol/biosynthesis , Epithelial Cells/metabolism , Mycobacterium Infections, Nontuberculous/immunology , Nontuberculous Mycobacteria/immunology , Respiratory Mucosa/metabolism , Adult , Aged , Bacterial Adhesion/physiology , Cell Movement/physiology , Cells, Cultured , Epithelial Cells/microbiology , Female , Gene Expression Profiling , Humans , Interleukin-17/biosynthesis , Interleukin-17/immunology , Interleukins/biosynthesis , Interleukins/immunology , Lung/immunology , Lung/microbiology , Lung/pathology , Male , Middle Aged , Mycobacterium Infections, Nontuberculous/genetics , Mycobacterium Infections, Nontuberculous/microbiology , Respiratory Mucosa/cytology , Respiratory Mucosa/microbiology
6.
J Allergy Clin Immunol ; 141(5): 1844-1853.e2, 2018 05.
Article in English | MEDLINE | ID: mdl-28859974

ABSTRACT

BACKGROUND: Sumoylation is a posttranslational reversible modification of cellular proteins through the conjugation of small ubiquitin-related modifier (SUMO) and comprises an important regulator of protein function. OBJECTIVE: We sought to characterize the molecular mechanism of a novel mutation at the SUMO motif on signal transducer and activator of transcription 1 (STAT1). METHODS: STAT1 sequencing and functional characterization were performed in transfection experiments by using immunoblotting and immunoprecipitation in STAT1-deficient cell lines. Transcriptional response and target gene activation were also investigated in PBMCs. RESULTS: We identified a novel STAT1 mutation (c.2114A>T, p.E705V) within the SUMO motif (702IKTE705) in a patient with disseminated Rhodococcus species infection, Norwegian scabies, chronic mucocutaneous candidiasis, hypothyroidism, and esophageal squamous cell carcinoma. The mutation is located in the tail segment and is predicted to disrupt STAT1 sumoylation. Immunoprecipitation experiments performed in transfected cells confirmed absent STAT1 sumoylation for E705V, whereas it was present in wild-type (WT) STAT1 cells, as well as the loss-of-function mutants L706S and Y701C. Furthermore, stimulation with IFN-γ led to enhanced STAT1 phosphorylation, enhanced transcriptional activity, and target gene expression in the E705V-transfected compared with WT-transfected cells. Computer modeling of WT and mutant STAT1 molecules showed variations in the accessibility of the phosphorylation site Y701, which corresponded to the loss-of-function and gain-of-function variants. CONCLUSION: This is the first report of a mutation in the STAT1 sumoylation motif associated with clinical disease. These data reinforce sumoylation as a key posttranslational regulatory modification of STAT1 and identify a novel mechanism for gain-of-function STAT1 disease in human subjects.


Subject(s)
Gain of Function Mutation/immunology , Mutation/genetics , STAT1 Transcription Factor/genetics , Ubiquitin/genetics , Animals , COS Cells , Candidiasis, Chronic Mucocutaneous/genetics , Cell Line , Chlorocebus aethiops , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression/genetics , Humans , Phosphorylation/genetics , SUMO-1 Protein/genetics , Sumoylation/genetics , Transcription, Genetic/genetics , Transcriptional Activation/genetics , Transfection/methods
7.
Blood ; 130(21): 2307-2316, 2017 11 23.
Article in English | MEDLINE | ID: mdl-28972011

ABSTRACT

Pathogenic gain-of-function variants in the genes encoding phosphoinositide 3-kinase δ (PI3Kδ) lead to accumulation of transitional B cells and senescent T cells, lymphadenopathy, and immune deficiency (activated PI3Kδ syndrome [APDS]). Knowing the genetic etiology of APDS afforded us the opportunity to explore PI3Kδ inhibition as a precision-medicine therapy. Here, we report in vitro and in vivo effects of inhibiting PI3Kδ in APDS. Treatment with leniolisib (CDZ173), a selective PI3Kδ inhibitor, caused dose-dependent suppression of PI3Kδ pathway hyperactivation (measured as phosphorylation of AKT/S6) in cell lines ectopically expressing APDS-causative p110δ variants and in T-cell blasts derived from patients. A clinical trial with 6 APDS patients was conducted as a 12-week, open-label, multisite, within-subject, dose-escalation study of oral leniolisib to assess safety, pharmacokinetics, and effects on lymphoproliferation and immune dysregulation. Oral leniolisib led to a dose-dependent reduction in PI3K/AKT pathway activity assessed ex vivo and improved immune dysregulation. We observed normalization of circulating transitional and naive B cells, reduction in PD-1+CD4+ and senescent CD57+CD4- T cells, and decreases in elevated serum immunoglobulin M and inflammatory markers including interferon γ, tumor necrosis factor, CXCL13, and CXCL10 with leniolisib therapy. After 12 weeks of treatment, all patients showed amelioration of lymphoproliferation with lymph node sizes and spleen volumes reduced by 39% (mean; range, 26%-57%) and 40% (mean; range, 13%-65%), respectively. Thus, leniolisib was well tolerated and improved laboratory and clinical parameters in APDS, supporting the specific inhibition of PI3Kδ as a promising new targeted therapy in APDS and other diseases characterized by overactivation of the PI3Kδ pathway. This trial was registered at www.clinicaltrials.gov as #NCT02435173.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/enzymology , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Chemokines/blood , Child , Child, Preschool , Class I Phosphatidylinositol 3-Kinases/immunology , Class I Phosphatidylinositol 3-Kinases/metabolism , Demography , Dose-Response Relationship, Drug , Female , Humans , Immunoglobulin M/blood , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/pathology , Infant , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Male , Mutation/genetics , Organ Size , Phenotype , Primary Immunodeficiency Diseases , Pyridines/pharmacokinetics , Pyrimidines/pharmacokinetics , Rats , Spleen/drug effects , Spleen/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Transfection
8.
Sci Signal ; 7(325): ra45, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24825920

ABSTRACT

Antigen-mediated stimulation of the T cell receptor (TCR) triggers activation of nuclear factor κB (NF-κB), a key transcriptional regulator of T cell proliferation and effector cell differentiation. TCR signaling to NF-κB requires both the Carma1-Bcl10-Malt1 (CBM) complex and the inhibitor of κB (IκB) kinase (IKK) complex; however, the molecular mechanisms connecting the CBM complex to activation of IKK are incompletely defined. We found that the active IKK complex is a component of a TCR-dependent cytosolic Bcl10-Malt1 signalosome containing the adaptor protein p62, which forms in effector T cells. Phosphorylated IκBα and NF-κB were transiently recruited to this signalosome before NF-κB translocated to the nucleus. Inhibiting the activity of the kinase TAK1 or IKK blocked the phosphorylation of IKK, but not the formation of p62-Bcl10-Malt1 clusters, suggesting that activation of IKK occurs after signalosome assembly. Furthermore, analysis of T cells from p62-deficient mice demonstrated that the p62-dependent clustering of signaling components stimulated activation of NF-κB in effector T cells. Thus, TCR-stimulated activation of NF-κB requires the assembly of cytosolic p62-Bcl10-Malt1-IKK signalosomes, which may ensure highly regulated activation of NF-κB in response to TCR engagement.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Caspases/immunology , Heat-Shock Proteins/immunology , I-kappa B Kinase/immunology , NF-kappa B/immunology , Neoplasm Proteins/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , B-Cell CLL-Lymphoma 10 Protein , Caspases/genetics , Heat-Shock Proteins/genetics , I-kappa B Kinase/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/immunology , Mice , Mice, Knockout , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B/genetics , Neoplasm Proteins/genetics , Phosphorylation/genetics , Phosphorylation/immunology , Receptors, Antigen, T-Cell/genetics , Sequestosome-1 Protein , Signal Transduction/genetics
9.
Immunity ; 36(6): 947-58, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22658522

ABSTRACT

The adaptor protein Bcl10 is a critically important mediator of T cell receptor (TCR)-to-NF-κB signaling. Bcl10 degradation is a poorly understood biological phenomenon suggested to reduce TCR activation of NF-κB. Here we have shown that TCR engagement triggers the degradation of Bcl10 in primary effector T cells but not in naive T cells. TCR engagement promoted K63 polyubiquitination of Bcl10, causing Bcl10 association with the autophagy adaptor p62. Paradoxically, p62 binding was required for both Bcl10 signaling to NF-κB and gradual degradation of Bcl10 by autophagy. Bcl10 autophagy was highly selective, as shown by the fact that it spared Malt1, a direct Bcl10 binding partner. Blockade of Bcl10 autophagy enhanced TCR activation of NF-κB. Together, these data demonstrate that selective autophagy of Bcl10 is a pathway-intrinsic homeostatic mechanism that modulates TCR signaling to NF-κB in effector T cells. This homeostatic process may protect T cells from adverse consequences of unrestrained NF-κB activation, such as cellular senescence.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Autophagy/physiology , NF-kappa B/metabolism , Receptors, Antigen, T-Cell/immunology , T-Lymphocyte Subsets/immunology , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Animals , Autophagy-Related Proteins , B-Cell CLL-Lymphoma 10 Protein , Caspases/physiology , Cell Differentiation , Cytosol/immunology , Cytosol/ultrastructure , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/genetics , Heat-Shock Proteins/physiology , Homeostasis , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Neoplasm Proteins/physiology , Phagosomes/physiology , Phagosomes/ultrastructure , Protein Interaction Mapping , Sequestosome-1 Protein , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocyte Subsets/ultrastructure , Th2 Cells/immunology , Th2 Cells/ultrastructure , Ubiquitin-Conjugating Enzymes/physiology
10.
Mol Biol Cell ; 22(18): 3491-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21795397

ABSTRACT

Protein kinase Cθ (PKCθ) is a serine/threonine kinase that plays an essential role in antigen-regulated responses of T lymphocytes. Upon antigen stimulation, PKCθ is rapidly recruited to the immunological synapse (IS), the region of contact between the T cell and antigen-presenting cell. This behavior is unique among T cell PKC isoforms. To define domains of PKCθ required for retention at the IS, we generated deletion and point mutants of PKCθ. We used quantitative imaging analysis to assess IS retention of PKCθ mutants in antigen-stimulated T cell clones. Deletion of the kinase domain or site-directed mutation of a subset of known PKCθ phosphorylation sites abrogated or significantly reduced IS retention, respectively. IS retention did not correlate with phosphorylation of specific PKCθ residues but rather with kinase function. Thus PKCθ catalytic competence is essential for stable IS retention.


Subject(s)
Immunological Synapses/metabolism , Isoenzymes/metabolism , Protein Kinase C/metabolism , Protein Transport , Amino Acid Substitution , Animals , Catalytic Domain , Cells, Cultured , Green Fluorescent Proteins/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Mice , Mutagenesis, Site-Directed , Phosphorylation , Protein Kinase C/chemistry , Protein Kinase C/genetics , Protein Kinase C-theta , Recombinant Fusion Proteins/metabolism , Single-Cell Analysis
11.
J Biol Chem ; 283(47): 32419-31, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-18806265

ABSTRACT

Bcl10 and MALT1 are essential mediators of NF-kappaB activation in response to the triggering of a diverse array of transmembrane receptors, including antigen receptors. Additionally, both proteins are translocation targets in MALT lymphoma. Thus, a detailed understanding of the interaction between these mediators is of considerable biological importance. Previous studies have indicated that a 13-amino acid region downstream of the Bcl10 caspase recruitment domain (CARD) is responsible for interacting with the immunoglobulin-like domains of MALT1. We now provide evidence that the death domain of MALT1 and the CARD of Bcl10 also contribute to Bcl10-MALT1 interactions. Although a direct interaction between the MALT1 death domain and Bcl10 cannot be detected via immunoprecipitation, FRET data strongly suggest that the death domain of MALT1 contributes significantly to the association between Bcl10 and MALT1 in T cells in vivo. Furthermore, analysis of point mutants of conserved residues of Bcl10 shows that the Bcl10 CARD is essential for interaction with the MALT1 N terminus. Mutations that disrupt proper folding of the Bcl10 CARD strongly impair Bcl10-MALT1 interactions. Molecular modeling and functional analyses of Bcl10 point mutants suggest that residues Asp(80) and Glu(84) of helix 5 of the Bcl10 CARD directly contact MALT1. Together, these data demonstrate that the association between Bcl10 and MALT1 involves a complex interaction between multiple protein domains. Moreover, the Bcl10-MALT1 interaction is the second reported example of interactions between a CARD and a non-CARD protein region, which suggests that many signaling cascades may utilize CARD interactions with non-CARD domains.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Caspases/metabolism , Neoplasm Proteins/metabolism , Amino Acid Sequence , Animals , Aspartic Acid/chemistry , B-Cell CLL-Lymphoma 10 Protein , Chickens , Glutamic Acid/chemistry , Humans , Molecular Conformation , Molecular Sequence Data , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B/metabolism , Point Mutation , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...