Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(20): 24724-24735, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37170777

ABSTRACT

Herein, we report the paddy-straw-derived graphene quantum dots (GQDs)-reinforced vertical-aligned two-dimensional (2D) ZnO nanosheet-based flexible triboelectric nanogenerator (FTNG) for scavenging mechanical energy for the first time. The GQDs (diameter ∼5-7 nm) and ZnO nanosheets were grown using a hydrothermal method and seed-assisted chemical route, respectively. The X-ray diffraction and electron microscopy results confirmed the formation of a hexagonal wurtzite crystal structure and vertical-aligned morphology of 2D ZnO nanosheets. The GQD-reinforced ZnO-nanosheet-based FTNG device generated an output voltage of 40 V and current density of 2 µA/cm2, respectively, whereas pristine vertical-aligned ZnO-nanosheet-based device produced an output voltage of only 16 V and a current density of 0.36 µA/cm2, respectively. The performance of the GQD-ZnO nanosheet FTNG device was also measured under illumination of the UV light, and a drastic increase in the output voltage is observed as compared to a pristine ZnO-nanosheet-based device. The GQD-reinforced ZnO nanosheets exhibited very high dielectric constant of 40 at low frequency side. The current finding suggested a novel approach to efficiently harvest mechanical energy and a novel method to fabricate the self-powered UV sensors and tribotronics devices using agrowaste-derived GQDs and ZnO nanosheets.

2.
J Invest Dermatol ; 143(5): 699-710.e10, 2023 05.
Article in English | MEDLINE | ID: mdl-36528128

ABSTRACT

Systemic sclerosis is a fibrotic disease that initiates in the skin and progresses to internal organs, leading to a poor prognosis. Unraveling the etiology of a chronic, multifactorial disease such as systemic sclerosis has been aided by various animal models that recapitulate certain aspects of the human pathology. We found that the transcription factor SNAI1 is overexpressed in the epidermis of patients with systemic sclerosis, and a transgenic mouse recapitulating this expression pattern is sufficient to induce many clinical features of the human disease. Using this mouse model as a discovery platform, we have uncovered a critical role for the matricellular protein Mindin (SPON2) in fibrogenesis. Mindin is produced by SNAI1 transgenic skin keratinocytes and aids fibrogenesis by inducing early inflammatory cytokine production and collagen secretion in resident dermal fibroblasts. Given the dispensability of Mindin in normal tissue physiology, targeting this protein holds promise as an effective therapy for fibrosis.


Subject(s)
Fibroblasts , Scleroderma, Systemic , Mice , Animals , Humans , Fibroblasts/metabolism , Scleroderma, Systemic/pathology , Skin/pathology , Extracellular Matrix Proteins/metabolism , Fibrosis , Mice, Transgenic , Disease Models, Animal , Neoplasm Proteins/metabolism
3.
J Phys Chem Lett ; 13(44): 10267-10274, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36302075

ABSTRACT

Highly crystalline few-layered tungsten disulfide (WS2) nanosheets were synthesized via a cost-effective, low-temperature hydrothermal route. X-ray diffraction and HR-TEM analysis confirmed the formation of hexagonal nanosheets with thickness of ∼6-8 nm. Raman analysis and AFM results confirmed the few-layered 2H phase of WS2 nanosheets. The UV-vis study shows absorption peaks at 219 and 271 nm with large band gap value of ∼3.12 eV for WS2 nanosheets. Surprisingly, WS2 nanosheets show a dielectric constant of approximately ε' ≈ 5245, whereas bulk WS2 material exhibits a dielectric constant of 7482373. An almost 1426-fold decrease in the value of dielectric constant for the WS2 nanosheet is observed. Such an extreme reduction in dielectric constant and observance of large band gap in WS2 nanosheet were observed for the first time. The present study reveals the excellent and unusual optical and dielectric properties for their potential application in optoelectronic, dielectric, solar, phosphor, and various nanoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...