Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Mach Intell ; 5(7): 799-810, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38706981

ABSTRACT

Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them to different facilities, such as healthcare organizations. This process of bringing the model to the data empowers each facility to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status and real-world deployment, our roadmap and, importantly, the use of MedPerf with multiple international institutions within cloud-based technology and on-premises scenarios. Finally, we welcome new contributions by researchers and organizations to further strengthen MedPerf as an open benchmarking platform.

2.
AMIA Annu Symp Proc ; 2022: 570-579, 2022.
Article in English | MEDLINE | ID: mdl-37128435

ABSTRACT

Intrasaccular flow disruptors treat cerebral aneurysms by diverting the blood flow from the aneurysm sac. Residual flow into the sac after the intervention is a failure that could be due to the use of an undersized device, or to vascular anatomy and clinical condition of the patient. We report a machine learning model based on over 100 clinical and imaging features that predict the outcome of wide-neck bifurcation aneurysm treatment with an intrasaccular embolization device. We combine clinical features with a diverse set of common and novel imaging measurements within a random forest model. We also develop neural network segmentation algorithms in 2D and 3D to contour the sac in angiographic images and automatically calculate the imaging features. These deliver 90% overlap with manual contouring in 2D and 83% in 3D. Our predictive model classifies complete vs. partial occlusion outcomes with an accuracy of 75.31%, and weighted F1-score of 0.74.


Subject(s)
Embolization, Therapeutic , Intracranial Aneurysm , Humans , Treatment Outcome , Intracranial Aneurysm/therapy , Embolization, Therapeutic/methods , Hemodynamics , Retrospective Studies
3.
Sci Data ; 8(1): 92, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767191

ABSTRACT

We developed a rich dataset of Chest X-Ray (CXR) images to assist investigators in artificial intelligence. The data were collected using an eye-tracking system while a radiologist reviewed and reported on 1,083 CXR images. The dataset contains the following aligned data: CXR image, transcribed radiology report text, radiologist's dictation audio and eye gaze coordinates data. We hope this dataset can contribute to various areas of research particularly towards explainable and multimodal deep learning/machine learning methods. Furthermore, investigators in disease classification and localization, automated radiology report generation, and human-machine interaction can benefit from these data. We report deep learning experiments that utilize the attention maps produced by the eye gaze dataset to show the potential utility of this dataset.


Subject(s)
Deep Learning , Thorax/diagnostic imaging , Humans , Radiography
4.
Sci Rep ; 11(1): 139, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420322

ABSTRACT

Liver cancer is one of the leading causes of cancer deaths in Asia and Africa. It is caused by the Hepatocellular carcinoma (HCC) in almost 90% of all cases. HCC is a malignant tumor and the most common histological type of the primary liver cancers. The detection and evaluation of viable tumor regions in HCC present an important clinical significance since it is a key step to assess response of chemoradiotherapy and tumor cell proportion in genetic tests. Recent advances in computer vision, digital pathology and microscopy imaging enable automatic histopathology image analysis for cancer diagnosis. In this paper, we present a multi-resolution deep learning model HistoCAE for viable tumor segmentation in whole-slide liver histopathology images. We propose convolutional autoencoder (CAE) based framework with a customized reconstruction loss function for image reconstruction, followed by a classification module to classify each image patch as tumor versus non-tumor. The resulting patch-based prediction results are spatially combined to generate the final segmentation result for each WSI. Additionally, the spatially organized encoded feature map derived from small image patches is used to compress the gigapixel whole-slide images. Our proposed model presents superior performance to other benchmark models with extensive experiments, suggesting its efficacy for viable tumor area segmentation with liver whole-slide images.


Subject(s)
Deep Learning , Liver Neoplasms/diagnostic imaging , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Humans , Image Processing, Computer-Assisted , Liver/diagnostic imaging , Liver/pathology , Liver Neoplasms/pathology
5.
JAMA Netw Open ; 3(10): e2022779, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33034642

ABSTRACT

Importance: Chest radiography is the most common diagnostic imaging examination performed in emergency departments (EDs). Augmenting clinicians with automated preliminary read assistants could help expedite their workflows, improve accuracy, and reduce the cost of care. Objective: To assess the performance of artificial intelligence (AI) algorithms in realistic radiology workflows by performing an objective comparative evaluation of the preliminary reads of anteroposterior (AP) frontal chest radiographs performed by an AI algorithm and radiology residents. Design, Setting, and Participants: This diagnostic study included a set of 72 findings assembled by clinical experts to constitute a full-fledged preliminary read of AP frontal chest radiographs. A novel deep learning architecture was designed for an AI algorithm to estimate the findings per image. The AI algorithm was trained using a multihospital training data set of 342 126 frontal chest radiographs captured in ED and urgent care settings. The training data were labeled from their associated reports. Image-based F1 score was chosen to optimize the operating point on the receiver operating characteristics (ROC) curve so as to minimize the number of missed findings and overcalls per image read. The performance of the model was compared with that of 5 radiology residents recruited from multiple institutions in the US in an objective study in which a separate data set of 1998 AP frontal chest radiographs was drawn from a hospital source representative of realistic preliminary reads in inpatient and ED settings. A triple consensus with adjudication process was used to derive the ground truth labels for the study data set. The performance of AI algorithm and radiology residents was assessed by comparing their reads with ground truth findings. All studies were conducted through a web-based clinical study application system. The triple consensus data set was collected between February and October 2018. The comparison study was preformed between January and October 2019. Data were analyzed from October to February 2020. After the first round of reviews, further analysis of the data was performed from March to July 2020. Main Outcomes and Measures: The learning performance of the AI algorithm was judged using the conventional ROC curve and the area under the curve (AUC) during training and field testing on the study data set. For the AI algorithm and radiology residents, the individual finding label performance was measured using the conventional measures of label-based sensitivity, specificity, and positive predictive value (PPV). In addition, the agreement with the ground truth on the assignment of findings to images was measured using the pooled κ statistic. The preliminary read performance was recorded for AI algorithm and radiology residents using new measures of mean image-based sensitivity, specificity, and PPV designed for recording the fraction of misses and overcalls on a per image basis. The 1-sided analysis of variance test was used to compare the means of each group (AI algorithm vs radiology residents) using the F distribution, and the null hypothesis was that the groups would have similar means. Results: The trained AI algorithm achieved a mean AUC across labels of 0.807 (weighted mean AUC, 0.841) after training. On the study data set, which had a different prevalence distribution, the mean AUC achieved was 0.772 (weighted mean AUC, 0.865). The interrater agreement with ground truth finding labels for AI algorithm predictions had pooled κ value of 0.544, and the pooled κ for radiology residents was 0.585. For the preliminary read performance, the analysis of variance test was used to compare the distributions of AI algorithm and radiology residents' mean image-based sensitivity, PPV, and specificity. The mean image-based sensitivity for AI algorithm was 0.716 (95% CI, 0.704-0.729) and for radiology residents was 0.720 (95% CI, 0.709-0.732) (P = .66), while the PPV was 0.730 (95% CI, 0.718-0.742) for the AI algorithm and 0.682 (95% CI, 0.670-0.694) for the radiology residents (P < .001), and specificity was 0.980 (95% CI, 0.980-0.981) for the AI algorithm and 0.973 (95% CI, 0.971-0.974) for the radiology residents (P < .001). Conclusions and Relevance: These findings suggest that it is possible to build AI algorithms that reach and exceed the mean level of performance of third-year radiology residents for full-fledged preliminary read of AP frontal chest radiographs. This diagnostic study also found that while the more complex findings would still benefit from expert overreads, the performance of AI algorithms was associated with the amount of data available for training rather than the level of difficulty of interpretation of the finding. Integrating such AI systems in radiology workflows for preliminary interpretations has the potential to expedite existing radiology workflows and address resource scarcity while improving overall accuracy and reducing the cost of care.


Subject(s)
Artificial Intelligence/standards , Internship and Residency/standards , Radiographic Image Interpretation, Computer-Assisted/standards , Thorax/diagnostic imaging , Algorithms , Area Under Curve , Artificial Intelligence/statistics & numerical data , Humans , Internship and Residency/methods , Internship and Residency/statistics & numerical data , Quality of Health Care/standards , Quality of Health Care/statistics & numerical data , ROC Curve , Radiographic Image Interpretation, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/statistics & numerical data , Radiography/instrumentation , Radiography/methods
6.
IEEE Trans Med Imaging ; 37(5): 1103-1113, 2018 05.
Article in English | MEDLINE | ID: mdl-29727274

ABSTRACT

A fully automated knee magnetic resonance imaging (MRI) segmentation method to study osteoarthritis (OA) was developed using a novel hierarchical set of random forests (RF) classifiers to learn the appearance of cartilage regions and their boundaries. A neighborhood approximation forest is used first to provide contextual feature to the second-level RF classifier that also considers local features and produces location-specific costs for the layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) framework. Double-echo steady state MRIs used in this paper originated from the OA Initiative study. Trained on 34 MRIs with varying degrees of OA, the performance of the learning-based method tested on 108 MRIs showed significant reduction in segmentation errors ( ) compared with the conventional gradient-based and single-stage RF-learned costs. The 3-D LOGISMOS was extended to longitudinal-3-D (4-D) to simultaneously segment multiple follow-up visits of the same patient. As such, data from all time-points of the temporal sequence contribute information to a single optimal solution that utilizes both spatial 3-D and temporal contexts. 4-D LOGISMOS validation on 108 MRIs from baseline, and 12 month follow-up scans of 54 patients showed significant reduction in segmentation errors ( ) compared with 3-D. Finally, the potential of 4-D LOGISMOS was further explored on the same 54 patients using five annual follow-up scans demonstrating a significant improvement of measuring cartilage thickness ( ) compared with the sequential 3-D approach.


Subject(s)
Imaging, Three-Dimensional/methods , Knee/diagnostic imaging , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/diagnostic imaging , Algorithms , Databases, Factual , Decision Trees , Humans
7.
Proc SPIE Int Soc Opt Eng ; 101332017 Feb 11.
Article in English | MEDLINE | ID: mdl-28626291

ABSTRACT

Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer and FSL approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the other two methods, for both the caudate (Dice: 0.89 ± 0.03) and the putamen (0.89 ± 0.03).

8.
Med Image Comput Comput Assist Interv ; 9901: 538-546, 2016 Oct.
Article in English | MEDLINE | ID: mdl-28626843

ABSTRACT

Multi-atlas label fusion methods have gained popularity in a variety of segmentation tasks given their attractive performance. Graph-based segmentation methods are widely used given their global optimality guarantee. We propose a novel approach, GOLF, that combines the strengths of these two approaches. GOLF incorporates shape priors to the label-fusion problem and provides a globally optimal solution even for the multi-label scenario, while also leveraging the highly accurate posterior maps from a multi-atlas label fusion approach. We demonstrate GOLF for the joint segmentation of the left and right pairs of caudate, putamen, globus pallidus and nucleus accumbens. Compared to the FreeSurfer and FIRST approaches, GOLF is significantly more accurate on all reported indices for all 8 structures. We also present comparisons to a multi-atlas approach, which reveals further insights on the contributions of the different components of the proposed framework.


Subject(s)
Atlases as Topic , Brain/diagnostic imaging , Pattern Recognition, Automated , Adult , Aged , Aged, 80 and over , Algorithms , Brain/anatomy & histology , Caudate Nucleus/anatomy & histology , Caudate Nucleus/diagnostic imaging , Globus Pallidus/anatomy & histology , Globus Pallidus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged , Neuroimaging/methods , Nucleus Accumbens/anatomy & histology , Nucleus Accumbens/diagnostic imaging , Putamen/anatomy & histology , Putamen/diagnostic imaging , Reproducibility of Results , Sensitivity and Specificity
9.
Med Image Comput Comput Assist Interv ; 9901: 344-351, 2016 Oct.
Article in English | MEDLINE | ID: mdl-28626842

ABSTRACT

We present a fully automated learning-based approach for segmenting knee cartilage in presence of osteoarthritis (OA). The algorithm employs a hierarchical set of two random forest classifiers. The first is a neighborhood approximation forest, the output probability map of which is utilized as a feature set for the second random forest (RF) classifier. The output probabilities of the hierarchical approach are used as cost functions in a Layered Optimal Graph Segmentation of Multiple Objects and Surfaces (LOGISMOS). In this work, we highlight a novel post-processing interaction called just-enough interaction (JEI) which enables quick and accurate generation of a large set of training examples. Disjoint sets of 15 and 13 subjects were used for training and tested on another disjoint set of 53 knee datasets. All images were acquired using double echo steady state (DESS) MRI sequence and are from the osteoarthritis initiative (OAI) database. Segmentation performance using the learning-based cost function showed significant reduction in segmentation errors (p < 0.05) in comparison with conventional gradient-based cost functions.


Subject(s)
Algorithms , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/diagnostic imaging , Automation , Databases, Factual , Femur/diagnostic imaging , Humans , Osteoarthritis, Knee/classification , Reproducibility of Results , Sensitivity and Specificity , Tibia/diagnostic imaging
10.
Magn Reson Imaging ; 29(2): 222-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21144688

ABSTRACT

We introduce a novel noniterative algorithm for the fast and accurate reconstruction of nonuniformly sampled MRI data. The proposed scheme derives the reconstructed image as the nonuniform inverse Fourier transform of a compensated dataset. We derive each sample in the compensated dataset as a weighted linear combination of a few measured k-space samples. The specific k-space samples and the weights involved in the linear combination are derived such that the reconstruction error is minimized. The computational complexity of the proposed scheme is comparable to that of gridding. At the same time, it provides significantly improved accuracy and is considerably more robust to noise and undersampling. The advantages of the proposed scheme makes it ideally suited for the fast reconstruction of large multidimensional datasets, which routinely arise in applications such as f-MRI and MR spectroscopy. The comparisons with state-of-the-art algorithms on numerical phantoms and MRI data clearly demonstrate the performance improvement.


Subject(s)
Algorithms , Brain/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Humans , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...