Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35110412

ABSTRACT

The pentose phosphate pathway is a major source of NADPH for oxidative stress resistance in cancer cells but there is limited insight into its role in metastasis, when some cancer cells experience high levels of oxidative stress. To address this, we mutated the substrate binding site of glucose 6-phosphate dehydrogenase (G6PD), which catalyzes the first step of the pentose phosphate pathway, in patient-derived melanomas. G6PD mutant melanomas had significantly decreased G6PD enzymatic activity and depletion of intermediates in the oxidative pentose phosphate pathway. Reduced G6PD function had little effect on the formation of primary subcutaneous tumors, but when these tumors spontaneously metastasized, the frequency of circulating melanoma cells in the blood and metastatic disease burden were significantly reduced. G6PD mutant melanomas exhibited increased levels of reactive oxygen species, decreased NADPH levels, and depleted glutathione as compared to control melanomas. G6PD mutant melanomas compensated for this increase in oxidative stress by increasing malic enzyme activity and glutamine consumption. This generated a new metabolic vulnerability as G6PD mutant melanomas were more dependent upon glutaminase than control melanomas, both for oxidative stress management and anaplerosis. The oxidative pentose phosphate pathway, malic enzyme, and glutaminolysis thus confer layered protection against oxidative stress during metastasis.


Subject(s)
Glucosephosphate Dehydrogenase/metabolism , Glutamine/metabolism , Melanoma/metabolism , Oxidative Stress/physiology , Animals , Humans , Mice , Mice, Inbred NOD , NADP/metabolism , Oxidation-Reduction , Pentose Phosphate Pathway/physiology , Reactive Oxygen Species/metabolism
3.
Cutis ; 108(6): 319-330, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35167785

ABSTRACT

Eligible for 1 MOC SA Credit From the ABD This Photo Challenge in our print edition is eligible for 1 self-assessment credit for Maintenance of Certification from the American Board of Dermatology (ABD). After completing this activity, diplomates can visit the ABD website (http://www.abderm.org) to self-report the credits under the activity title "Cutis Photo Challenge." You may report the credit after each activity is completed or after accumulating multiple credits.


Subject(s)
Clinical Competence , Education, Medical, Continuing , Aged , Certification , Female , Humans , Specialty Boards , United States
4.
Nature ; 577(7788): 115-120, 2020 01.
Article in English | MEDLINE | ID: mdl-31853067

ABSTRACT

Metastasis requires cancer cells to undergo metabolic changes that are poorly understood1-3. Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1high and MCT1-/low cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1high cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.


Subject(s)
Melanoma/metabolism , Monocarboxylic Acid Transporters/metabolism , Symporters/metabolism , Animals , Cell Line, Tumor , Cell Survival , Humans , Melanoma/genetics , Melanoma/secondary , Mice , Monocarboxylic Acid Transporters/genetics , Oxidative Stress , Symporters/genetics , Xenograft Model Antitumor Assays
5.
Cell Rep ; 28(9): 2293-2305.e9, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31461647

ABSTRACT

We screen ion channels and transporters throughout the genome to identify those required by human melanoma cells but not by normal human melanocytes. We discover that Mucolipin-1 (MCOLN1), which encodes the lysosomal cation channel TRPML1, is preferentially required for the survival and proliferation of melanoma cells. Loss of MCOLN1/TRPML1 function impairs the growth of patient-derived melanomas in culture and in xenografts but does not affect the growth of human melanocytes. TRPML1 expression and macropinocytosis are elevated in melanoma cells relative to melanocytes. TRPML1 is required in melanoma cells to negatively regulate MAPK pathway and mTORC1 signaling. TRPML1-deficient melanoma cells exhibit decreased survival, proliferation, tumor growth, and macropinocytosis, as well as serine depletion and proteotoxic stress. All of these phenotypes are partially or completely rescued by mTORC1 inhibition. Melanoma cells thus increase TRPML1 expression relative to melanocytes to attenuate MAPK and mTORC1 signaling, to sustain macropinocytosis, and to avoid proteotoxic stress.


Subject(s)
MAP Kinase Signaling System , Mechanistic Target of Rapamycin Complex 1/metabolism , Melanoma/metabolism , Proteostasis , Transient Receptor Potential Channels/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Female , Humans , Male , Melanoma/genetics , Melanoma/pathology , Mice , Phenotype , Pinocytosis , Transient Receptor Potential Channels/genetics , Tumor Cells, Cultured
6.
Dev Cell ; 49(3): 444-460.e9, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31063759

ABSTRACT

Actin assembly supplies the structural framework for cell morphology and migration. Beyond structure, this actin framework can also be engaged to drive biochemical signaling programs. Here, we describe how the hyperactivation of Rac1 via the P29S mutation (Rac1P29S) in melanoma hijacks branched actin network assembly to coordinate proliferative cues that facilitate metastasis and drug resistance. Upon growth challenge, Rac1P29S-harboring melanoma cells massively upregulate lamellipodia formation by dendritic actin polymerization. These extended lamellipodia form a signaling microdomain that sequesters and phospho-inactivates the tumor suppressor NF2/Merlin, driving Rac1P29S cell proliferation in growth suppressive conditions. These biochemically active lamellipodia require cell-substrate attachment but not focal adhesion assembly and drive proliferation independently of the ERK/MAPK pathway. These data suggest a critical link between cell morphology and cell signaling and reconcile the dichotomy of Rac1's regulation of both proliferation and actin assembly by revealing a mutual signaling axis wherein actin assembly drives proliferation in melanoma.


Subject(s)
Dendritic Cells/metabolism , Melanoma/metabolism , Pseudopodia/metabolism , rac1 GTP-Binding Protein/metabolism , Actins/metabolism , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Dendrites/metabolism , Dendrites/pathology , Female , Heterografts , Humans , MAP Kinase Signaling System , Melanoma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasm Metastasis , Pseudopodia/pathology , rac1 GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...