Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 19(5): 600-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16150571

ABSTRACT

It is shown that real-time computations on spike patterns and temporal integration of information in neural microcircuit models are compatible with potentially descruptive additional inputs such as oscillations. A minor change in the connection statistics of such circuits (making synaptic connections to more distal target neurons more likely for excitatory than for inhibitory neurons) endows such generic neural microcircuit model with the ability to generate periodic patterns autonomously. We show that such pattern generation can also be multiplexed with pattern classification and temporal integration of information in the same neural circuit. These results can be interpreted as showing that periodic activity provides a second channel for communication in neural systems which can be used to synchronize or coordinate spatially separated processes, without encumbering local real-time computations on spike trains in diverse neural circuits.


Subject(s)
Biological Clocks/physiology , Computer Simulation , Models, Biological , Neural Networks, Computer , Neurons/physiology , Action Potentials/physiology , Humans , Mental Processes/physiology , Time Factors
2.
Biol Cybern ; 94(1): 46-57, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16331489

ABSTRACT

Multiple sensory-motor maps located in the brainstem and the cortex are involved in spatial orientation. Guiding movements of eyes, head, neck and arms they provide an approximately linear relation between target distance and motor response. This involves especially the superior colliculus in the brainstem and the parietal cortex. There, the natural frame of reference follows from the retinal representation of the environment. A model of navigation is presented that is based on the modulation of activity in those sensory-motor maps. The actual mechanism chosen was gain-field modulation, a process of multimodal integration that has been demonstrated in the parietal cortex and superior colliculus, and was implemented as attraction to visual cues (colour). Dependent on the metric of the sensory-motor map, the relative attraction to these cues implemented as gain field modulation and their position define a fixed point attractor on the plane for locomotive behaviour. The actual implementation used Kohonen-networks in a variant of reinforcement learning that are well suited to generate such topographically organized sensory-motor maps with roughly linear visuo-motor response characteristics. In the following, it was investigated how such an implicit coding of target positions by gain-field parameters might be represented in the hippocampus formation and under what conditions a direction-invariant space representation can arise from such retinotopic representations of multiple cues. Information about the orientation in the plane--as could be provided by head direction cells--appeared to be necessary for unambiguous space representation in our model in agreement with physiological experiments. With this information, Gauss-shaped "place-cells" could be generated, however, the representation of the spatial environment was repetitive and clustered and single cells were always tuned to the gain-field parameters as well.


Subject(s)
Brain/physiology , Computer Simulation , Hippocampus/physiology , Models, Neurological , Motor Activity/physiology , Neural Networks, Computer , Algorithms , Humans , Learning/physiology , Pattern Recognition, Automated
3.
Biol Cybern ; 92(3): 206-18, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15754193

ABSTRACT

The aim of this study is to produce travelling waves in a planar net of artificial spiking neurons. Provided that the parameters of the waves--frequency, wavelength and orientation--can be sufficiently controlled, such a network can serve as a model of the spinal pattern generator for swimming and terrestrial quadruped locomotion. A previous implementation using non-spiking, sigmoid neurons lacked the physiological plausibility that can only be attained using more realistic spiking neurons. Simulations were conducted using three types of spiking neuronal models. First, leaky integrate-and-fire neurons were used. Second, we introduced a phenomenological bursting neuron. And third, a canonical model neuron was implemented which could reproduce the full dynamics of the Hodgkin-Huxley neuron. The conditions necessary to produce appropriate travelling waves corresponded largely to the known anatomy and physiology of the spinal cord. Especially important features for the generation of travelling waves were the topology of the local connections--so-called off-centre connectivity--the availability of dynamic synapses and, to some extent, the availability of bursting cell types. The latter were necessary to produce stable waves at the low frequencies observed in quadruped locomotion. In general, the phenomenon of travelling waves was very robust and largely independent of the network parameters and emulated cell types.


Subject(s)
Action Potentials/physiology , Models, Neurological , Nerve Net/physiology , Neural Pathways/physiology , Spinal Cord/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Cell Membrane/physiology , Gait/physiology , Humans , Locomotion/physiology , Movement/physiology
4.
Biol Cybern ; 88(1): 11-9, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12545279

ABSTRACT

A traveling wave in a two-dimensional spinal cord model constitutes a stable pattern generator for quadruped gaits. In the context of the somatotopic organization of the spinal cord, this pattern generator is sufficient to generate stable locomotive limb trajectories. The elastic properties of muscles alone, providing linear negative feedback, are sufficient to stabilize stance and locomotion in the presence of perturbative forces. We further show that such a pattern generator is capable of organizing sensory processing in the spinal cord. A single-layer perceptron was trained to associate the sensory feedback from the limb (coding force, length, and change of length for each muscle) with the two-dimensional activity profile of the traveling wave. This resulted in a well-defined spatial organization of the connections within the spinal network along a rostrocaudal axis. The spinal network driven by peripheral afferents alone supported autonomous locomotion in the positive feedback mode, whereas in the negative feedback mode stance was stabilized in response to perturbations. Systematic variation of a parameter representing the effect of gamma-motor neurons on muscle spindle activity in our model led to a corresponding shift of limb position during stance and locomotion, resulting in a systematic displacement alteration of foot positions.


Subject(s)
Feedback, Physiological , Neural Networks, Computer , Spinal Cord , Feedback, Physiological/physiology , Spinal Cord/anatomy & histology , Spinal Cord/physiology
5.
Biol Cybern ; 88(1): 20-32, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12545280

ABSTRACT

The concerted and self-organizing behavior of spinal cord segments in generating locomotor patterns is modulated by afferent sensory information and controlled by descending pathways from the brainstem, cerebellum, or cortex. The purpose of this study was to define a minimal set of parameters that could control a similar self-organizing behavior in a two-dimensional neural network. When we implemented synaptic depression and active membrane repolarization as two properties of the neurons, the two-dimensional neural network generated traveling waves. Their wavelength and angle of propagation could be independently controlled by two parameters that modulated excitatory premotor neurons and inhibitory commissural neurons. It is further demonstrated that the selection of wave parameters corresponds to the selection of quadruped gaits.


Subject(s)
Gait , Neural Networks, Computer , Spinal Cord , Gait/physiology , Spinal Cord/anatomy & histology , Spinal Cord/physiology
SELECTION OF CITATIONS
SEARCH DETAIL