Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 200, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351049

ABSTRACT

Winter cover crop performance metrics (i.e., vegetative biomass quantity and quality) affect ecosystem services provisions, but they vary widely due to differences in agronomic practices, soil properties, and climate. Cereal rye (Secale cereale) is the most common winter cover crop in the United States due to its winter hardiness, low seed cost, and high biomass production. We compiled data on cereal rye winter cover crop performance metrics, agronomic practices, and soil properties across the eastern half of the United States. The dataset includes a total of 5,695 cereal rye biomass observations across 208 site-years between 2001-2022 and encompasses a wide range of agronomic, soils, and climate conditions. Cereal rye biomass values had a mean of 3,428 kg ha-1, a median of 2,458 kg ha-1, and a standard deviation of 3,163 kg ha-1. The data can be used for empirical analyses, to calibrate, validate, and evaluate process-based models, and to develop decision support tools for management and policy decisions.


Subject(s)
Edible Grain , Secale , Agriculture , Ecosystem , Edible Grain/growth & development , Seasons , Secale/growth & development , Soil , United States
2.
J Environ Qual ; 51(4): 683-695, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35443288

ABSTRACT

Agroecosystems in the upper Mississippi River Basin are highly productive but often contribute to deterioration of water quality and greenhouse gas emissions. Cover cropping and no-till are conservation strategies implemented to reduce the environmental impact of these agroecosystems. However, using multiple strategies can lead to systemwide interactions that are not fully understood. These interactions can affect not only environmental quality metrics, such as subsurface drainage nitrate losses or nitrous oxide (N2 O) emissions, but also may influence crop production potential. A field trial was initiated comparing nitrate losses, N2 O emissions, and crop production under systems with fall chisel plow tillage, fall chisel plow tillage with an oat (Avena sativa L.) cover crop (CP-oat), no-till (NT), no-till with a rye (Secale cereale L.) cover crop (NT-rye), and NT with zero N fertilizer. Pathways for nitrate losses and N2 O emissions did not appear linked and were not tied to cover crop or tillage practices. Nitrate losses were linked with drainage volumes, and cover crops and tillage had limited effect on cumulative drainage volumes. Notably, NT-rye altered the relationship between drainage volume and nitrate losses by reducing nitrate concentrations, lowering nitrate losses by 59 ±9% compared with CP-oat and 67 ± 9% compared with NT. Neither cover crop nor tillage consistently affected N2 O emissions or crop yield. Rather, N2 O emissions were closely tied with fertilizer N application and seasonal weather patterns. These findings indicate that nitrate leaching and N2 O emissions are regulated by separate mechanisms, so conservation management may require stacking multiple practices to be effective.


Both subsurface nitrate losses and nitrous oxide emissions were linked with weather. Subsurface nitrate losses were linked with cumulative annual drainage. Nitrous oxide emissions were linked with fertilizer N applications. Rye cover crop with no-till reduced nitrate losses with no yield declines.


Subject(s)
Fertilizers , Nitrous Oxide , Agriculture , Crops, Agricultural , Nitrates , Nitrogen/analysis , Nitrous Oxide/analysis , Soil
3.
Plant Dis ; 105(12): 4014-4024, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34253043

ABSTRACT

Despite numerous environmental benefits associated with cover crop (CC) use, some farmers are reluctant to include CCs in their production systems because of reported yield declines in corn. There are numerous potential reasons for this yield decline, including seedling disease. A winter rye CC can serve as a "green bridge" for corn seedling pathogens. We hypothesized that proximity of corn seedling roots to decaying rye CC roots contributes to corn seeding disease. An experimental field plot and an on-farm study were conducted over 2 years to evaluate growth, development, and disease severity of corn seedlings planted at various distances from decaying winter rye CC plants. The experimental field plot study was conducted in a no-till corn-soybean rotation with five replications of a winter rye CC treatment seeded as (i) no-CC control, (ii) broadcast, (iii) 19-cm drilled rows, and (iv) 76-cm drilled rows. The on-farm study was no-till corn-soybean rotation with four replications of a winter rye CC seeded as 38-cm drilled rows, 76-cm drilled rows, and no-CC control. The corn was planted on 76-cm rows shortly after rye was terminated. With multiple seeding arrangements of winter rye, corn was planted at different distances from winter rye. Corn radicle root rot severity and incidence, shoot height, shoot dry weight, corn height and chlorophyll at VT (tasseling), ear parameters, and yield were collected. Soil samples were taken in the corn row and the interrow at winter rye termination, corn planting, and corn growth stage V3 (three leaves with fully developed collars) to estimate the abundance of Pythium clade B members present in soil samples. Our results showed that increased distance between winter rye residue and corn reduced seedling disease and Pythium clade B populations in the radicles and soil and increased shoot dry weight, leaf chlorophyll, plant height, and yield. This suggests that physically distancing the corn crop from the winter rye CC is one way to reduce the negative effects of a winter rye CC on corn.


Subject(s)
Seedlings , Zea mays , Seasons , Secale , Soil
4.
Plant Dis ; 105(3): 538-541, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32830593

ABSTRACT

Yield loss of corn following a winter rye cover crop (CC) has been associated with increases in seedling disease caused by Pythium spp. We hypothesized that physical separation between the CC and corn could reduce the risk of seedling disease, and benefit corn growth and development. In a growth chamber experiment, corn seedlings were planted at 0 cm and 8 to 10 cm from terminated winter rye plants. Root rot severity was assessed at crop development stage V2, and quantitative PCR was used to estimate the abundance of Pythium clade B and clade F members present in corn roots. Radicle and seminal root rot severity was numerically greater when seedlings were planted 0 cm from terminated rye plants compared with seedlings planted 8 to 10 cm away. Moreover, a greater abundance of Pythium clade B was detected in corn grown within the terminated winter rye compared with corn planted further away (P = 0.0003). No effect of distance between corn and winter rye was detected for Pythium clade F. These data contribute to our understanding of the effect of a winter rye cover crop on corn and will inform field trial management practices for farmers to reduce occasional yield loss of corn following a winter rye cover crop.


Subject(s)
Pythium , Zea mays , Seasons , Secale , Seedlings
5.
Plant Dis ; 104(3): 677-687, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31958247

ABSTRACT

The effects of winter cover crops on root disease and growth of corn and soybeans are poorly understood. A 3-year field experiment investigated the effect of winter cereal rye (Secale cereale L.) and winter camelina (Camelina sativa [L.] Crantz), used either in all three years or in rotation with each other, on corn (Zea mays L.) and soybean (Glycine max. [L.] Merr.) growth, root disease, and yield. Corn following a cover crop of camelina had reduced root disease, a lower Pythium population in seedling roots, and greater growth and yields compared with corn following a rye cover crop. Camelina and rye cover crops before soybean had either a positive or no effect on soybean growth and development, root disease, and yield. Moreover, Pythium clade B populations were greater in corn seedlings after a rye cover crop compared with those following a camelina cover crop, whereas clade F populations were greater on soybean seedlings following a camelina cover crop compared with seedlings following a rye cover crop. A winter camelina cover crop grown before corn had less-negative effects on corn seedling growth, root disease, and final yield than a winter rye cover crop before corn. Neither cover crop had negative effects on soybean, and the cover crop in the preceding spring had no measurable effects on either corn or soybean.


Subject(s)
Glycine max , Zea mays , Agriculture , Crop Production , Growth and Development , Seedlings
6.
Phytopathology ; 106(6): 591-601, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26926485

ABSTRACT

Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.


Subject(s)
Plant Diseases/microbiology , Secale/microbiology , Secale/physiology , Seedlings/microbiology , Zea mays/microbiology , Agriculture/methods , DNA/genetics , DNA/isolation & purification , Fusarium/isolation & purification , Herbicides , Plant Roots/microbiology , Pythium/isolation & purification
7.
J Environ Qual ; 38(4): 1664-71, 2009.
Article in English | MEDLINE | ID: mdl-19549943

ABSTRACT

Subsurface drainage in agricultural watersheds exports a large quantity of nitrate-nitrogen (NO(3)-N) and concentrations frequently exceed 10 mg L(-1). A laboratory column study was conducted to investigate the ability of a wood chip bioreactor to promote denitrification under mean water flow rates of 2.9, 6.6, 8.7 and 13.6 cm d(-1) which are representative of flows entering subsurface drainage tiles. Columns were packed with wood chips and inoculated with a small amount of oxidized till and incubated at 10 degrees C. Silicone sampling cells at the effluent ports were used for N(2)O sampling. (15)Nitrate was added to dosing water at 50 mg L(-1) and effluent was collected and analyzed for NO(3)-N, NH(4)-N, and dissolved organic carbon. Mean NO(3)-N concentrations in the effluent were 0.0, 18.5, 24.2, and 35.3 mg L(-1) for the flow rates 2.9, 6.6, 8.7, and 13.6 cm d(-1), respectively, which correspond to 100, 64, 52, and 30% efficiency of removal. The NO(3)-N removal rates per gram of wood increased with increasing flow rates. Denitrification was found to be the dominant NO(3)-N removal mechanism as immobilization of (15)NO(3)-N was negligible compared with the quantity of (15)NO(3)-N removed. Nitrous oxide production from the columns ranged from 0.003 to 0.028% of the N denitrified, indicating that complete denitrification generally occurred. Based on these observations, wood chip bioreactors may be successful at removing significant quantities of NO(3)-N, and reducing NO(3)-N concentration from water moving to subsurface drainage at flow rates observed in central Iowa subsoil.


Subject(s)
Bioreactors , Water , Wood , Nitrogen/analysis , Nitrous Oxide/analysis
8.
J Environ Qual ; 35(4): 1496-506, 2006.
Article in English | MEDLINE | ID: mdl-16825470

ABSTRACT

Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were established within each crop of the rotation and both crops were present in each of the two growing seasons. Nitrous oxide fluxes were measured weekly during the periods of April through October, biweekly during March and November, and monthly in December, January, and February. Two polyvinyl chloride rings (30-cm diameter) were installed in each plot (in and between plant rows) and were used to support soil chambers during the gas flux measurements. Flux measurements were performed by placing vented chambers on the rings and collecting gas samples 0, 15, 30, and 45 min following chamber deployment. Nitrous oxide fluxes were computed from the change in N2O concentration with time, after accounting for diffusional constraints. We observed no significant tillage or cover crop effects on N2O flux in either year. In 2003 mean N2O fluxes were 2.7, 2.2, and 2.3 kg N2O-N ha(-1) yr(-1) from the soybean plots under chisel plow, no-till, and no-till + cover crop, respectively. Emissions from the chisel plow, no-till, and no-till + cover crop plots planted to corn averaged 10.2, 7.9, and 7.6 kg N2O-N ha(-1) yr(-1), respectively. In 2004 fluxes from both crops were higher than in 2003, but fluxes did not differ among the management systems. Fluxes from the corn plots were significantly higher than from the soybean plots in both years. Comparison of our results with estimates calculated using the Intergovernmental Panel on Climate Change default emission factor of 0.0125 indicate that the estimated fluxes underestimate measured emissions by a factor of 3 at our sites.


Subject(s)
Crops, Agricultural , Environmental Monitoring , Glycine max/growth & development , Nitrous Oxide/metabolism , Zea mays/growth & development , Climate , Ecosystem , Midwestern United States , Nitrogen/analysis , Nitrogen/metabolism , Nitrous Oxide/analysis , Polyvinyl Chloride/chemistry , Seasons , Soil , Time Factors
9.
J Environ Qual ; 35(3): 824-9, 2006.
Article in English | MEDLINE | ID: mdl-16585625

ABSTRACT

Nitrate in water from tile drained corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] fields in the U.S. Midwest contributes to nitrate contamination of surface waters. Denitrification-based biofilters are a promising strategy for reducing nitrate concentrations, but these systems require an external carbon supply to sustain denitrification. The ability of four organic materials to serve as carbon substrates for denitrification biofilters was evaluated in this laboratory study. Wood chips, wood chips amended with soybean oil, cornstalks, and cardboard fibers were mixed with subsoil (oxidized till) and incubated anaerobically for 180 d. Periodically, 15NO3-N was added to maintain nitrate N concentrations between 10 and 100 mg L-1. All of the materials stimulated NO3-N removal and the degree of removal from highest to lowest was: cornstalks, cardboard fibers, wood chips with oil, and wood chips alone. Analysis of 15N showed that immobilization and dissimilatory nitrate reduction to ammonium accounted for <4% of NO3-N removal in all treatments, therefore denitrification was the dominant NO3-N removal process. Cardboard fibers, wood chips and oil, and wood chips alone did not support as much denitrification as cornstalks, but their rates of NO3-N removal were steady and would probably continue longer than cornstalks. The addition of soybean oil to wood chips significantly increased denitrification over wood chips alone.


Subject(s)
Carbon/chemistry , Nitrites/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...