Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Mol Cell ; 82(24): 4647-4663.e8, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36525955

ABSTRACT

To explore genome organization and function in the HIV-infected brain, we applied single-nuclei transcriptomics, cell-type-specific chromosomal conformation mapping, and viral integration site sequencing (IS-seq) to frontal cortex from individuals with encephalitis (HIVE) and without (HIV+). Derepressive changes in 3D genomic compartment structures in HIVE microglia were linked to the transcriptional activation of interferon (IFN) signaling and cell migratory pathways, while transcriptional downregulation and repressive compartmentalization of neuronal health and signaling genes occurred in both HIVE and HIV+ microglia. IS-seq recovered 1,221 brain integration sites showing distinct genomic patterns compared with peripheral lymphocytes, with enrichment for sequences newly mobilized into a permissive chromatin environment after infection. Viral transcription occurred in a subset of highly activated microglia comprising 0.33% of all nuclei in HIVE brain. Our findings point to disrupted microglia-neuronal interactions in HIV and link retroviral integration to remodeling of the microglial 3D genome during infection.


Subject(s)
HIV Infections , Microglia , Humans , Microglia/metabolism , Brain , Macrophage Activation , Macrophages , HIV Infections/genetics
2.
Nat Neurosci ; 25(4): 474-483, 2022 04.
Article in English | MEDLINE | ID: mdl-35332326

ABSTRACT

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 104-106-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography. Large clusters of hyper-acetylated CRDs were enriched for SCZ heritability, with prominent representation of regulatory sequences governing fetal development and glutamatergic neuron signaling. Therefore, SCZ and BD brains show coordinated dysregulation of risk-associated regulatory sequences assembled into kilobase- to megabase-scaling chromosomal domains.


Subject(s)
Bipolar Disorder , Schizophrenia , Adult , Bipolar Disorder/genetics , Brain , Chromatin , Humans , Lysine/genetics , Schizophrenia/genetics
3.
Mol Psychiatry ; 27(8): 3355-3366, 2022 08.
Article in English | MEDLINE | ID: mdl-35296809

ABSTRACT

Large-scale genetic studies have revealed that the most prominent genes disrupted in autism are chromatin regulators mediating histone methylation/demethylation, suggesting the central role of epigenetic dysfunction in this disorder. Here, we show that histone lysine 4 dimethylation (H3K4me2), a histone mark linked to gene activation, is significantly decreased in the prefrontal cortex (PFC) of autistic human patients and mutant mice with the deficiency of top-ranking autism risk factor Shank3 or Cul3. A brief treatment of the autism models with highly potent and selective inhibitors of the H3K4me2 demethylase LSD1 (KDM1A) leads to the robust rescue of core symptoms of autism, including social deficits and repetitive behaviors. Concomitantly, LSD1 inhibition restores NMDA receptor function in PFC and AMPA receptor-mediated currents in striatum of Shank3-deficient mice. Genome-wide RNAseq and ChIPseq reveal that treatment of Shank3-deficient mice with the LSD1 inhibitor restores the expression and H3K4me2 occupancy of downregulated genes enriched in synaptic signaling and developmental processes. The immediate early gene tightly linked to neuronal plasticity, Egr1, is on the top list of rescued genes. The diminished transcription of Egr1 is recapitulated in PFC of autistic human patients. Overexpression of Egr1 in PFC of Shank3-deficient mice ameliorates social preference deficits. These results have for the first time revealed an important role of H3K4me2 abnormality in ASD pathophysiology, and the therapeutic potential of targeting H3K4me2 demethylase LSD1 or the downstream molecule Egr1 for ASD.


Subject(s)
Autistic Disorder , Histones , Humans , Mice , Animals , Histones/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Chromatin , Disease Models, Animal , Microfilament Proteins/genetics , Nerve Tissue Proteins/metabolism
4.
Mol Psychiatry ; 27(4): 2158-2170, 2022 04.
Article in English | MEDLINE | ID: mdl-35301427

ABSTRACT

Opioid use disorder is a highly heterogeneous disease driven by a variety of genetic and environmental risk factors which have yet to be fully elucidated. Opioid overdose, the most severe outcome of opioid use disorder, remains the leading cause of accidental death in the United States. We interrogated the effects of opioid overdose on the brain using ChIP-seq to quantify patterns of H3K27 acetylation in dorsolateral prefrontal cortical neurons isolated from 51 opioid-overdose cases and 51 accidental death controls. Among opioid cases, we observed global hypoacetylation and identified 388 putative enhancers consistently depleted for H3K27ac. Machine learning on H3K27ac patterns predicted case-control status with high accuracy. We focused on case-specific regulatory alterations, revealing 81,399 hypoacetylation events, uncovering vast inter-patient heterogeneity. We developed a strategy to decode this heterogeneity based on convergence analysis, which leveraged promoter-capture Hi-C to identify five genes over-burdened by alterations in their regulatory network or "plexus": ASTN2, KCNMA1, DUSP4, GABBR2, ENOX1. These convergent loci are enriched for opioid use disorder risk genes and heritability for generalized anxiety, number of sexual partners, and years of education. Overall, our multi-pronged approach uncovers neurobiological aspects of opioid use disorder and captures genetic and environmental factors perpetuating the opioid epidemic.


Subject(s)
Opiate Overdose , Opioid-Related Disorders , Analgesics, Opioid/therapeutic use , Epigenesis, Genetic/genetics , Humans , Machine Learning , Opioid-Related Disorders/drug therapy , United States
5.
Nat Commun ; 12(1): 7243, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903713

ABSTRACT

Regulatory mechanisms associated with repeat-rich sequences and chromosomal conformations in mature neurons remain unexplored. Here, we map cell-type specific chromatin domain organization in adult mouse cerebral cortex and report strong enrichment of Endogenous Retrovirus 2 (ERV2) repeat sequences in the neuron-specific heterochromatic B2NeuN+ megabase-scaling subcompartment. Single molecule long-read sequencing and comparative Hi-C chromosomal contact mapping in wild-derived SPRET/EiJ (Mus spretus) and laboratory inbred C57BL/6J (Mus musculus) reveal neuronal reconfigurations tracking recent ERV2 expansions in the murine germline, with significantly higher B2NeuN+ contact frequencies at sites with ongoing insertions in Mus musculus. Neuronal ablation of the retrotransposon silencer Kmt1e/Setdb1 triggers B2NeuN+ disintegration and rewiring with open chromatin domains enriched for cellular stress response genes, along with severe neuroinflammation and proviral assembly with infiltration of dendrites . We conclude that neuronal megabase-scale chromosomal architectures include an evolutionarily adaptive heterochromatic organization which, upon perturbation, results in transcriptional dysregulation and unleashes ERV2 proviruses with strong neuronal tropism.


Subject(s)
Chromosomes/metabolism , Neurons/metabolism , Retroelements/genetics , Animals , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Chromosomes/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endogenous Retroviruses/genetics , Evolution, Molecular , Gene Amplification , Gene Silencing , Genes, Intracisternal A-Particle/genetics , Genome, Viral/genetics , Gliosis/genetics , Gliosis/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice , Microglia/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/virology , Proviruses/genetics , Virion/genetics , Virion/metabolism
6.
Nat Commun ; 12(1): 3968, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172755

ABSTRACT

Cellular heterogeneity in the human brain obscures the identification of robust cellular regulatory networks, which is necessary to understand the function of non-coding elements and the impact of non-coding genetic variation. Here we integrate genome-wide chromosome conformation data from purified neurons and glia with transcriptomic and enhancer profiles, to characterize the gene regulatory landscape of two major cell classes in the human brain. We then leverage cell-type-specific regulatory landscapes to gain insight into the cellular etiology of several brain disorders. We find that Alzheimer's disease (AD)-associated epigenetic dysregulation is linked to neurons and oligodendrocytes, whereas genetic risk factors for AD highlighted microglia, suggesting that different cell types may contribute to disease risk, via different mechanisms. Moreover, integration of glutamatergic and GABAergic regulatory maps with genetic risk factors for schizophrenia (SCZ) and bipolar disorder (BD) identifies shared (parvalbumin-expressing interneurons) and distinct cellular etiologies (upper layer neurons for BD, and deeper layer projection neurons for SCZ). Collectively, these findings shed new light on cell-type-specific gene regulatory networks in brain disorders.


Subject(s)
Alzheimer Disease/genetics , Bipolar Disorder/genetics , Chromatin/ultrastructure , Schizophrenia/genetics , Acetylation , Alzheimer Disease/pathology , Bipolar Disorder/pathology , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation Sequencing , Enhancer Elements, Genetic , Epigenesis, Genetic , GABAergic Neurons/metabolism , Gene Expression Regulation , Genome-Wide Association Study , Histones/metabolism , Humans , Lysine/metabolism , Neuroglia/pathology , Neuroglia/ultrastructure , Neurons/pathology , Neurons/ultrastructure , Promoter Regions, Genetic , Schizophrenia/pathology
7.
Stem Cell Reports ; 16(3): 505-518, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33636110

ABSTRACT

The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant interindividual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly afflict healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants influence vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single-nucleotide polymorphism (rs4702), common in the population and located in the 3' UTR of the protease FURIN, influences alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can have an impact on viral infection and thus contribute to clinical heterogeneity in COVID-19. Ongoing genetic studies will help to identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , 3' Untranslated Regions/genetics , Adolescent , Adult , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Female , Furin/genetics , Host-Pathogen Interactions/genetics , Humans , Induced Pluripotent Stem Cells/virology , Male , Neurons/virology , Peptide Hydrolases/genetics , SARS-CoV-2/pathogenicity , Vero Cells
8.
bioRxiv ; 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32995783

ABSTRACT

The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant inter-individual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly render healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants also impact vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR-engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single nucleotide polymorphism (rs4702), common in the population at large, and located in the 3'UTR of the protease FURIN, impacts alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can impact viral infection, and thus contribute to clinical heterogeneity in SARS-CoV-2. Ongoing genetic studies will help to better identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs that might treat disease.

9.
Genome Med ; 12(1): 19, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075678

ABSTRACT

BACKGROUND: Midbrain dopaminergic neurons (MDN) represent 0.0005% of the brain's neuronal population and mediate cognition, food intake, and metabolism. MDN are also posited to underlay the neurobiological dysfunction of schizophrenia (SCZ), a severe neuropsychiatric disorder that is characterized by psychosis as well as multifactorial medical co-morbidities, including metabolic disease, contributing to markedly increased morbidity and mortality. Paradoxically, however, the genetic risk sequences of psychosis and traits associated with metabolic disease, such as body mass, show very limited overlap. METHODS: We investigated the genomic interaction of SCZ with medical conditions and traits, including body mass index (BMI), by exploring the MDN's "spatial genome," including chromosomal contact landscapes as a critical layer of cell type-specific epigenomic regulation. Low-input Hi-C protocols were applied to 5-10 × 103 dopaminergic and other cell-specific nuclei collected by fluorescence-activated nuclei sorting from the adult human midbrain. RESULTS: The Hi-C-reconstructed MDN spatial genome revealed 11 "Euclidean hot spots" of clustered chromatin domains harboring risk sequences for SCZ and elevated BMI. Inter- and intra-chromosomal contacts interconnecting SCZ and BMI risk sequences showed massive enrichment for brain-specific expression quantitative trait loci (eQTL), with gene ontologies, regulatory motifs and proteomic interactions related to adipogenesis and lipid regulation, dopaminergic neurogenesis and neuronal connectivity, and reward- and addiction-related pathways. CONCLUSIONS: We uncovered shared nuclear topographies of cognitive and metabolic risk variants. More broadly, our PsychENCODE sponsored Hi-C study offers a novel genomic approach for the study of psychiatric and medical co-morbidities constrained by limited overlap of their respective genetic risk architectures on the linear genome.


Subject(s)
Dopaminergic Neurons/metabolism , Polymorphism, Genetic , Quantitative Trait Loci , Schizophrenia/genetics , Adipogenesis , Animals , Body Mass Index , Chromosomes/genetics , Cognition , Humans , Lipid Metabolism , Mesencephalon/cytology , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Neurogenesis , Schizophrenia/metabolism , Schizophrenia/pathology
10.
Science ; 362(6420)2018 12 14.
Article in English | MEDLINE | ID: mdl-30545851

ABSTRACT

To explore the developmental reorganization of the three-dimensional genome of the brain in the context of neuropsychiatric disease, we monitored chromosomal conformations in differentiating neural progenitor cells. Neuronal and glial differentiation was associated with widespread developmental remodeling of the chromosomal contact map and included interactions anchored in common variant sequences that confer heritable risk for schizophrenia. We describe cell type-specific chromosomal connectomes composed of schizophrenia risk variants and their distal targets, which altogether show enrichment for genes that regulate neuronal connectivity and chromatin remodeling, and evidence for coordinated transcriptional regulation and proteomic interaction of the participating genes. Developmentally regulated chromosomal conformation changes at schizophrenia-relevant sequences disproportionally occurred in neurons, highlighting the existence of cell type-specific disease risk vulnerabilities in spatial genome organization.


Subject(s)
Chromosomes, Human/chemistry , Connectome , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Neural Stem Cells/cytology , Neurogenesis/genetics , Schizophrenia/genetics , Brain/growth & development , Brain/metabolism , Cells, Cultured , Chromatin/chemistry , Chromatin Assembly and Disassembly , Genome, Human , Genome-Wide Association Study , Humans , Male , Neural Stem Cells/metabolism , Neuroglia/cytology , Neurons/cytology , Neurons/metabolism , Nucleic Acid Conformation , Protein Interaction Maps/genetics , Proteomics , Risk , Transcription, Genetic , Transcriptome
11.
Nat Neurosci ; 21(8): 1126-1136, 2018 08.
Article in English | MEDLINE | ID: mdl-30038276

ABSTRACT

Risk variants for schizophrenia affect more than 100 genomic loci, yet cell- and tissue-specific roles underlying disease liability remain poorly characterized. We have generated for two cortical areas implicated in psychosis, the dorsolateral prefrontal cortex and anterior cingulate cortex, 157 reference maps from neuronal, neuron-depleted and bulk tissue chromatin for two histone marks associated with active promoters and enhancers, H3-trimethyl-Lys4 (H3K4me3) and H3-acetyl-Lys27 (H3K27ac). Differences between neuronal and neuron-depleted chromatin states were the major axis of variation in histone modification profiles, followed by substantial variability across subjects and cortical areas. Thousands of significant histone quantitative trait loci were identified in neuronal and neuron-depleted samples. Risk variants for schizophrenia, depressive symptoms and neuroticism were significantly over-represented in neuronal H3K4me3 and H3K27ac landscapes. Our Resource, sponsored by PsychENCODE and CommonMind, highlights the critical role of cell-type-specific signatures at regulatory and disease-associated noncoding sequences in the human frontal lobe.


Subject(s)
Epigenesis, Genetic/genetics , Frontal Lobe/metabolism , Frontal Lobe/pathology , Histones/genetics , Schizophrenia/genetics , Schizophrenia/metabolism , Alzheimer Disease/genetics , Brain Mapping , Chromatin/genetics , Depression/genetics , Depression/pathology , Educational Status , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome-Wide Association Study , Gyrus Cinguli/pathology , Humans , Neurotic Disorders/genetics , Neurotic Disorders/pathology , Prefrontal Cortex/pathology , Risk
12.
Prog Mol Biol Transl Sci ; 157: 21-40, 2018.
Article in English | MEDLINE | ID: mdl-29933951

ABSTRACT

Chromosomal conformations, including promoter-enhancer loops, provide a critical regulatory layer for the transcriptional machinery. Therefore, schizophrenia, a common psychiatric disorder associated with broad changes in neuronal gene expression in prefrontal cortex and other brain regions implicated in psychosis, could be associated with alterations in higher-order chromatin. Here, we review early studies on spatial genome organization in the schizophrenia postmortem brain and discuss how integrative approaches using cell culture and animal model systems could gain deeper insight into the potential roles of higher-order chromatin for the neurobiology of and novel treatment avenues for common psychiatric disease.


Subject(s)
Chromosomes/chemistry , Epigenomics , Nucleic Acid Conformation , Schizophrenia/genetics , Animals , Disease Models, Animal , Humans , Nervous System/embryology
13.
Am J Med Genet B Neuropsychiatr Genet ; 174(6): 631-640, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28699694

ABSTRACT

Large-scale consortia including the Psychiatric Genomics Consortium, the Common Minds Consortium, BrainSeq and PsychENCODE, and many other studies taken together provide increasingly detailed insights into the genetic and epigenetic risk architectures of schizophrenia (SCZ) and offer vast amounts of molecular information, but with largely unexplored therapeutic potential. Here we discuss how epigenomic studies in human brain could guide animal work to test the impact of disease-associated alterations in chromatin structure and function on cognition and behavior. For example, transcription factors such as MYOCYTE-SPECIFIC ENHANCER FACTOR 2C (MEF2C), or multiple regulators of the open chromatin mark, methyl-histone H3-lysine 4, are associated with the genetic risk architectures of common psychiatric disease and alterations in chromatin structure and function in diseased brain tissue. Importantly, these molecules also affect cognition and behavior in genetically engineered mice, including virus-mediated expression changes in prefrontal cortex (PFC) and other key nodes in the circuitry underlying psychosis. Therefore, preclinical and small laboratory animal work could target genomic sequences affected by chromatin alterations in SCZ. To this end, in vivo editing of enhancer and other regulatory non-coding DNA by RNA-guided nucleases including CRISPR-Cas, and designer transcription factors, could be expected to deliver pipelines for novel therapeutic approaches aimed at improving cognitive dysfunction and other core symptoms of SCZ.


Subject(s)
Epigenomics , Schizophrenia/genetics , Animals , Mice
14.
Nat Genet ; 49(8): 1239-1250, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28671686

ABSTRACT

We report locus-specific disintegration of megabase-scale chromosomal conformations in brain after neuronal ablation of Setdb1 (also known as Kmt1e; encodes a histone H3 lysine 9 methyltransferase), including a large topologically associated 1.2-Mb domain conserved in humans and mice that encompasses >70 genes at the clustered protocadherin locus (hereafter referred to as cPcdh). The cPcdh topologically associated domain (TADcPcdh) in neurons from mutant mice showed abnormal accumulation of the transcriptional regulator and three-dimensional (3D) genome organizer CTCF at cryptic binding sites, in conjunction with DNA cytosine hypomethylation, histone hyperacetylation and upregulated expression. Genes encoding stochastically expressed protocadherins were transcribed by increased numbers of cortical neurons, indicating relaxation of single-cell constraint. SETDB1-dependent loop formations bypassed 0.2-1 Mb of linear genome and radiated from the TADcPcdh fringes toward cis-regulatory sequences within the cPcdh locus, counterbalanced shorter-range facilitative promoter-enhancer contacts and carried loop-bound polymorphisms that were associated with genetic risk for schizophrenia. We show that the SETDB1 repressor complex, which involves multiple KRAB zinc finger proteins, shields neuronal genomes from excess CTCF binding and is critically required for structural maintenance of TADcPcdh.


Subject(s)
Chromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Neurons/metabolism , Animals , CCCTC-Binding Factor , Cadherins/genetics , Cell Line , DNA Methylation , Epigenesis, Genetic , Female , Gene Expression Regulation , Histone-Lysine N-Methyltransferase/genetics , Humans , Male , Mice , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Domains , Repressor Proteins/metabolism
15.
Biol Psychiatry ; 81(2): 162-170, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27113501

ABSTRACT

BACKGROUND: The nervous system may include more than 100 residue-specific posttranslational modifications of histones forming the nucleosome core that are often regulated in cell-type-specific manner. On a genome-wide scale, some of the histone posttranslational modification landscapes show significant overlap with the genetic risk architecture for several psychiatric disorders, fueling PsychENCODE and other large-scale efforts to comprehensively map neuronal and nonneuronal epigenomes in hundreds of specimens. However, practical guidelines for efficient generation of histone chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) datasets from postmortem brains are needed. METHODS: Protocols and quality controls are given for the following: 1) extraction, purification, and NeuN neuronal marker immunotagging of nuclei from adult human cerebral cortex; 2) fluorescence-activated nuclei sorting; 3) preparation of chromatin by micrococcal nuclease digest; 4) ChIP for open chromatin-associated histone methylation and acetylation; and 5) generation and sequencing of ChIP-seq libraries. RESULTS: We present a ChIP-seq pipeline for epigenome mapping in the neuronal and nonneuronal nuclei from the postmortem brain. This includes a stepwise system of quality controls and user-friendly data presentation platforms. CONCLUSIONS: Our practical guidelines will be useful for projects aimed at histone posttranslational modification mapping in chromatin extracted from hundreds of postmortem brain samples in cell-type-specific manner.


Subject(s)
Cerebral Cortex/metabolism , Epigenesis, Genetic , Epigenomics/methods , High-Throughput Nucleotide Sequencing/methods , Histones/metabolism , Nucleosomes/metabolism , Acetylation , Antigens, Nuclear/metabolism , Chromatin Immunoprecipitation , Humans , Methylation , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Protein Processing, Post-Translational
16.
Neuropsychopharmacology ; 41(13): 3103-3113, 2016 12.
Article in English | MEDLINE | ID: mdl-27485686

ABSTRACT

Lysine (K) methyltransferase 2a (Kmt2a) and other regulators of H3 lysine 4 methylation, a histone modification enriched at promoters and enhancers, are widely expressed throughout the brain, but molecular and cellular phenotypes in subcortical areas remain poorly explored. We report that Kmt2a conditional deletion in postnatal forebrain is associated with excessive nocturnal activity and with absent or blunted responses to stimulant and dopaminergic agonist drugs, in conjunction with near-complete loss of spike-timing-dependent long-term potentiation in medium spiny neurons (MSNs). Selective ablation of Kmt2a, but not the ortholog Kmt2b, in adult ventral striatum/nucleus accumbens neurons markedly increased anxiety scores in multiple behavioral paradigms. Striatal transcriptome sequencing in adult mutants identified 262 Kmt2a-sensitive genes, mostly downregulated in Kmt2a-deficient mice. Transcriptional repression includes the 5-Htr2a serotonin receptor, strongly associated with anxiety- and depression-related disorders in human and animal models. Consistent with the role of Kmt2a in promoting gene expression, the transcriptional regulators Bahcc1, Isl1, and Sp9 were downregulated and affected by H3K4 promoter hypomethylation. Therefore, Kmt2a regulates synaptic plasticity in striatal neurons and provides an epigenetic drug target for anxiety and dopamine-mediated behaviors.


Subject(s)
Action Potentials/genetics , Anxiety , Dopamine Agents/pharmacology , Histone-Lysine N-Methyltransferase/deficiency , Myeloid-Lymphoid Leukemia Protein/deficiency , Neuronal Plasticity/genetics , Neurons/physiology , Ventral Striatum/cytology , Action Potentials/drug effects , Animals , Animals, Newborn , Anxiety/drug therapy , Anxiety/genetics , Anxiety/metabolism , Anxiety/physiopathology , Circadian Rhythm/drug effects , Circadian Rhythm/genetics , Disease Models, Animal , Female , Histone-Lysine N-Methyltransferase/genetics , Locomotion/drug effects , Locomotion/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Oligonucleotide Array Sequence Analysis , Signal Transduction/drug effects , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...