Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 84(10): 1480-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27318014

ABSTRACT

Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G-protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active-state agonist-binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist-binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480-1489. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemistry , Adrenergic beta-2 Receptor Antagonists/chemistry , Benzoxazines/chemistry , Molecular Dynamics Simulation , Promethazine/chemistry , Propanolamines/chemistry , Receptors, Biogenic Amine/chemistry , Computer Graphics , Hydrogen Bonding , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Protein Binding , Structural Homology, Protein , Thermodynamics , Time Factors , User-Computer Interface
2.
Malar J ; 13: 434, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25407998

ABSTRACT

BACKGROUND: Octopamine receptors (OARs) perform key functions in the biological pathways of primarily invertebrates, making this class of G-protein coupled receptors (GPCRs) a potentially good target for insecticides. However, the lack of structural and experimental data for this insect-essential GPCR family has promoted the development of homology models that are good representations of their biological equivalents for in silico screening of small molecules. METHODS: Two Anopheles gambiae OARs were cloned, analysed and functionally characterized using a heterologous cell reporter system. Four antagonist- and four agonist-binding homology models were generated and virtually screened by docking against compounds obtained from the ZINC database. Resulting compounds from the virtual screen were tested experimentally using an in vitro reporter assay and in a mosquito larvicide bioassay. RESULTS: Six An. gambiae OAR/tyramine receptor genes were identified. Phylogenetic analysis revealed that the OAR (AGAP000045) that encodes two open reading frames is an α-adrenergic-like receptor. Both splice variants signal through cAMP and calcium. Mutagenesis analysis revealed that D100 in the TM3 region and S206 and S210 in the TM5 region are important to the activation of the GPCR. Some 2,150 compounds from the virtual screen were structurally analysed and 70 compounds were experimentally tested against AgOAR45B expressed in the GloResponse™CRE-luc2P HEK293 reporter cell line, revealing 21 antagonists, 17 weak antagonists, 2 agonists, and 5 weak agonists. CONCLUSION: Reported here is the functional characterization of two An. gambiae OARs and the discovery of new OAR agonists and antagonists based on virtual screening and molecular dynamics simulations. Four compounds were identified that had activity in a mosquito larva bioassay, three of which are imidazole derivatives. This combined computational and experimental approach is appropriate for the discovery of new and effective insecticides.


Subject(s)
Anopheles/drug effects , Drug Discovery/methods , Insecticides/pharmacology , Receptors, Biogenic Amine/agonists , Receptors, Biogenic Amine/antagonists & inhibitors , Animals , Anopheles/genetics , Anopheles/physiology , Biological Assay , Cloning, Molecular , Computational Biology/methods , Female , Insecticides/isolation & purification , Larva/drug effects , Larva/physiology , Male , Receptors, Biogenic Amine/genetics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...