Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Front Chem ; 12: 1371982, 2024.
Article in English | MEDLINE | ID: mdl-38638877

ABSTRACT

In natural products (NPs) research, methods for the efficient prioritization of natural extracts (NEs) are key for discovering novel bioactive NPs. In this study a biodiverse collection of 1,600 NEs, previously analyzed by UHPLC-HRMS2 metabolite profiling was screened for Wnt pathway regulation. The results of the biological screening drove the selection of a subset of 30 non-toxic NEs with an inhibitory IC50 ≤ 5 µg/mL. To increase the chance of finding structurally novel bioactive NPs, Inventa, a computational tool for automated scoring of NEs based on structural novelty was used to mine the HRMS2 analysis and dereplication results. After this, four out of the 30 bioactive NEs were shortlisted by this approach. The most promising sample was the ethyl acetate extract of the leaves of Hymenocardia punctata (Phyllanthaceae). Further phytochemical investigations of this species resulted in the isolation of three known prenylated flavones (3, 5, 7) and ten novel bicyclo[3.3.1]non-3-ene-2,9-diones (1, 2, 4, 6, 8-13), named Hymenotamayonins. Assessment of the Wnt inhibitory activity of these compounds revealed that two prenylated flavones and three novel bicyclic compounds showed interesting activity without apparent cytotoxicity. This study highlights the potential of combining Inventa's structural novelty scores with biological screening results to effectively discover novel bioactive NPs in large NE collections.

2.
Heliyon ; 10(5): e26656, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434323

ABSTRACT

Pathogenic variants in the GNAO1 gene, encoding the alpha subunit of an inhibitory heterotrimeric guanine nucleotide-binding protein (Go) highly expressed in the mammalian brain, have been linked to encephalopathy characterized by different combinations of neurological symptoms, including developmental delay, hypotonia, epilepsy and hyperkinetic movement disorder with life-threatening paroxysmal exacerbations. Currently, there are only symptomatic treatments, and little is known about the pathophysiology of GNAO1-related disorders. Here, we report the characterization of a new in vitro model system based on patient-derived induced pluripotent stem cells (hiPSCs) carrying the recurrent p.G203R amino acid substitution in Gαo, and a CRISPR-Cas9-genetically corrected isogenic control line. RNA-Seq analysis highlighted aberrant cell fate commitment in neuronal progenitor cells carrying the p.G203R pathogenic variant. Upon differentiation into cortical neurons, patients' cells showed reduced expression of early neural genes and increased expression of astrocyte markers, as well as premature and defective differentiation processes leading to aberrant formation of neuronal rosettes. Of note, comparable defects in gene expression and in the morphology of neural rosettes were observed in hiPSCs from an unrelated individual harboring the same GNAO1 variant. Functional characterization showed lower basal intracellular free calcium concentration ([Ca2+]i), reduced frequency of spontaneous activity, and a smaller response to several neurotransmitters in 40- and 50-days differentiated p.G203R neurons compared to control cells. These findings suggest that the GNAO1 pathogenic variant causes a neurodevelopmental phenotype characterized by aberrant differentiation of both neuronal and glial populations leading to a significant alteration of neuronal communication and signal transduction.

3.
PLoS Genet ; 20(3): e1011204, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452112

ABSTRACT

We investigate the contribution of a candidate gene, fiz (fezzik), to complex polygenic adaptation to juvenile malnutrition in Drosophila melanogaster. Experimental populations maintained for >250 generations of experimental evolution to a nutritionally poor larval diet (Selected populations) evolved several-fold lower fiz expression compared to unselected Control populations. Here we show that this divergence in fiz expression is mediated by a cis-regulatory polymorphism. This polymorphism, originally sampled from a natural population in Switzerland, is distinct from a second cis-regulatory SNP previously identified in non-African D. melanogaster populations, implying that two independent cis-regulatory variants promoting high fiz expression segregate in non-African populations. Enzymatic analyses of Fiz protein expressed in E. coli demonstrate that it has ecdysone oxidase activity acting on both ecdysone and 20-hydroxyecdysone. Four of five fiz paralogs annotated to ecdysteroid metabolism also show reduced expression in Selected larvae, implying that malnutrition-driven selection favored general downregulation of ecdysone oxidases. Finally, as an independent test of the role of fiz in poor diet adaptation, we show that fiz knockdown by RNAi results in faster larval growth on the poor diet, but at the cost of greatly reduced survival. These results imply that downregulation of fiz in Selected populations was favored by selection on the nutritionally poor diet because of its role in suppressing growth in response to nutrient shortage. However, they suggest that fiz downregulation is only adaptive in combination with other changes evolved by Selected populations, which ensure that the organism can sustain the faster growth promoted by fiz downregulation.


Subject(s)
3-Hydroxysteroid Dehydrogenases , Drosophila , Malnutrition , Animals , Drosophila/physiology , Drosophila melanogaster/physiology , Ecdysone/genetics , Escherichia coli , Larva
4.
Mov Disord ; 39(3): 601-606, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358016

ABSTRACT

BACKGROUND: Patients carrying pathogenic variants in GNAO1 present a phenotypic spectrum ranging from severe early-onset epileptic encephalopathy and developmental delay to mild adolescent/adult-onset dystonia. Genotype-phenotype correlation and molecular mechanisms underlying the disease remain understudied. METHODS: We analyzed the clinical course of a child carrying the novel GNAO1 mutation c.38T>C;p.Leu13Pro, and structural, biochemical, and cellular properties of the corresponding mutant Gαo-GNAO1-encoded protein-alongside the related mutation c.68T>C;p.Leu23Pro. RESULTS: The main clinical feature was parkinsonism with bradykinesia and rigidity, unlike the hyperkinetic movement disorder commonly associated with GNAO1 mutations. The Leu ➔ Pro substitutions have no impact on enzymatic activity or overall folding of Gαo but uniquely destabilize the N-terminal α-helix, blocking formation of the heterotrimeric G-protein and disabling activation by G-protein-coupled receptors. CONCLUSIONS: Our study defines a parkinsonism phenotype within the spectrum of GNAO1 disorders and suggests a genotype-phenotype correlation by GNAO1 mutations targeting the N-terminal α-helix of Gαo. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Movement Disorders , Parkinsonian Disorders , Adolescent , Child , Humans , Genetic Association Studies , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Movement Disorders/genetics , Mutation/genetics , Parkinsonian Disorders/genetics , Protein Conformation, alpha-Helical
5.
Epilepsy Behav Rep ; 24: 100598, 2023.
Article in English | MEDLINE | ID: mdl-38106673

ABSTRACT

•Gln52 mutations have been found in patients with GNAO1-related disorders.•Gln52 can be mutated to Pro and Arg, leading to different clinical manifestations.•Personalized drug discovery is tailored to specific GNAO1 mutations.

6.
Cells ; 12(20)2023 10 17.
Article in English | MEDLINE | ID: mdl-37887313

ABSTRACT

De novo mutations in GNAO1, the gene encoding the major neuronal G protein Gαo, cause a spectrum of pediatric encephalopathies with seizures, motor dysfunction, and developmental delay. Of the >80 distinct missense pathogenic variants, many appear to uniformly destabilize the guanine nucleotide handling of the mutant protein, speeding up GTP uptake and deactivating GTP hydrolysis. Zinc supplementation emerges as a promising treatment option for this disease, as Zn2+ ions reactivate the GTP hydrolysis on the mutant Gαo and restore cellular interactions for some of the mutants studied earlier. The molecular etiology of GNAO1 encephalopathies needs further elucidation as a prerequisite for the development of efficient therapeutic approaches. In this work, we combine clinical and medical genetics analysis of a novel GNAO1 mutation with an in-depth molecular dissection of the resultant protein variant. We identify two unrelated patients from Norway and France with a previously unknown mutation in GNAO1, c.509C>G that results in the production of the Pro170Arg mutant Gαo, leading to severe developmental and epileptic encephalopathy. Molecular investigations of Pro170Arg identify this mutant as a unique representative of the pathogenic variants. Its 100-fold-accelerated GTP uptake is not accompanied by a loss in GTP hydrolysis; Zn2+ ions induce a previously unseen effect on the mutant, forcing it to lose the bound GTP. Our work combining clinical and molecular analyses discovers a novel, biochemically distinct pathogenic missense variant of GNAO1 laying the ground for personalized treatment development.


Subject(s)
Brain Diseases , Humans , Child , Mutation/genetics , GTP-Binding Proteins/metabolism , Ions/metabolism , Guanosine Triphosphate , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
7.
Biomed Pharmacother ; 167: 115539, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742606

ABSTRACT

Among different strategies to develop novel therapies, drug repositioning (aka repurposing) aims at identifying new uses of an already approved or investigational drug. This approach has the advantages of availability of the extensive pre-existing knowledge of the drug's safety, pharmacology and toxicology, manufacturing and formulation. It provides advantages to the risk-versus-rewards trade-off as compared to the costly and time-consuming de novo drug discovery process. Clofazimine, a red-colored synthetic derivative of riminophenazines initially isolated from lichens, was first synthesized in the 1950 s, and passed through several phases of repositioning in its history as a drug. Being initially developed as an anti-tuberculosis treatment, it was repurposed for the treatment of leprosy, prior to re-repositioning for the treatment of multidrug-resistant tuberculosis and other infections. Since 1990 s, reports on the anticancer properties of clofazimine, both in vitro and in vivo, started to appear. Among the diverse mechanisms of action proposed, the activity of clofazimine as a specific inhibitor of the oncogenic Wnt signaling pathway has recently emerged as the promising targeting mechanism of the drug against breast, colon, liver, and other forms of cancer. Seventy years after the initial discovery, clofazimine's journey as a drug finding new applications continues, serving as a colorful illustration of drug repurposing in modern pharmacology.


Subject(s)
Clofazimine , Tuberculosis, Multidrug-Resistant , Humans , Clofazimine/pharmacology , Clofazimine/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Drug Discovery , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use
8.
iScience ; 26(8): 107270, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37502258

ABSTRACT

Intracellular signaling orchestrates an organism's development and functioning and underlies various pathologies, such as cancer, when aberrant. A universal cell signaling characteristic is channel capacity - the measure of how much information a given transmitting system can reliably transduce. Here, we describe improved approaches to quantify GPCR signaling channel capacity in single cells, averaged across cell population. We assess the channel capacity based on distribution of residuals by the cellular response amplitude. We further develop means to handle irregularly responding cancer cells using the integral values of their response to different agonist concentrations. These approaches enabled us to analyze, for the first time, channel capacity in single cancer cells. A universal feature emerging for different cancer cell types is a decreased channel capacity of their GPCR signaling. These findings provide experimental validation to the hypothesis that cancer is an information disease, bearing importance for basic cancer biology and anticancer drug discovery.

9.
Microbiol Spectr ; 11(4): e0482722, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37367224

ABSTRACT

The Wnt signaling pathway within host cells regulates infections by several pathogenic bacteria and viruses. Recent studies suggested that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection depends on ß-catenin and can be inhibited by the antileprotic drug clofazimine. Since clofazimine has been identified by us as a specific inhibitor of Wnt/ß-catenin signaling, these works could indicate a potential role of the Wnt pathway in SARS-CoV-2 infection. Here, we show that the Wnt pathway is active in pulmonary epithelial cells. However, we find that in multiple assays, SARS-CoV-2 infection is insensitive to Wnt inhibitors, including clofazimine, acting at different levels within the pathway. Our findings assert that endogenous Wnt signaling in the lung is unlikely required or involved in the SARS-CoV-2 infection and that pharmacological inhibition of this pathway with clofazimine or other compounds is not a universal way to develop treatments against the SARS-CoV-2 infection. IMPORTANCE The development of inhibitors of the SARS-CoV-2 infection remains a need of utmost importance. The Wnt signaling pathway in host cells is often implicated in infections by bacteria and viruses. In this work, we show that, despite previous indications, pharmacological modulation of the Wnt pathway does not represent a promising strategy to control SARS-CoV-2 infection in lung epithelia.


Subject(s)
COVID-19 , Humans , COVID-19/pathology , beta Catenin , Clofazimine , SARS-CoV-2 , Lung , Epithelial Cells
10.
Animal Model Exp Med ; 6(3): 230-236, 2023 06.
Article in English | MEDLINE | ID: mdl-37323110

ABSTRACT

Neuroscience and neurology research is dominated by experimentation with rodents. Around 75% of neurology disease-associated genes have orthologs in Drosophila melanogaster, the fruit fly amenable to complex neurological and behavioral investigations. However, non-vertebrate models including Drosophila have so far been unable to significantly replace mice and rats in this field of studies. One reason for this situation is the predominance of gene overexpression (and gene loss-of-function) methodologies used when establishing a Drosophila model of a given neurological disease, a strategy that does not recapitulate accurately enough the genetic disease conditions. I argue here the need for a systematic humanization approach, whereby the Drosophila orthologs of human disease genes are replaced with the human sequences. This approach will identify the list of diseases and the underlying genes that can be adequately modeled in the fruit fly. I discuss the neurological disease genes to which this systematic humanization approach should be applied and provide an example of such an application, and consider its importance for subsequent disease modeling and drug discovery in Drosophila. I argue that this paradigm will not only advance our understanding of the molecular etiology of a number of neurological disorders, but will also gradually enable researchers to reduce experimentation using rodent models of multiple neurological diseases and eventually replace these models.


Subject(s)
Drosophila , Nervous System Diseases , Animals , Rats , Mice , Humans , Drosophila/genetics , Drosophila melanogaster/genetics , Disease Models, Animal , Nervous System Diseases/genetics , Drug Discovery
12.
Trends Mol Med ; 29(6): 468-480, 2023 06.
Article in English | MEDLINE | ID: mdl-37045723

ABSTRACT

Wnt signaling plays numerous functions in cancer, from primary transformation and tumor growth to metastasis. In addition to these cancer cell-intrinsic functions, Wnt signaling emerges to critically control cross-communication among cancer cells and the tumor microenvironment (TME). Here, we summarize the evidence that not only multiple cancer cell types, but also cells constituting the TME 'speak the Wnt language'. Fibroblasts, macrophages, endothelia, and lymphocytes all use the Wnt language to convey messages to and from cancer cells and among themselves; these messages are important for tumor progression and fate. Decoding this language will advance our understanding of tumor biology and unveil novel therapeutic avenues.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/pathology , Macrophages/metabolism , Wnt Signaling Pathway , Language
13.
Med ; 4(5): 311-325.e7, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37001522

ABSTRACT

BACKGROUND: The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants. METHODS: In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery. FINDINGS: We describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gßγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged. CONCLUSIONS: This in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo. FUNDING: This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem.


Subject(s)
GTP-Binding Proteins , High-Throughput Screening Assays , Humans , Child , Drug Evaluation, Preclinical , Mutation/genetics , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Guanosine Triphosphate , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
14.
Antioxidants (Basel) ; 12(2)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36829945

ABSTRACT

A Pacific brittle star Ophiura sarsii has previously been shown to produce a chlorin (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (ETPA) (1) with potent phototoxic activities, making it applicable to photodynamic therapy. Using extensive LC-MS metabolite profiling, molecular network analysis, and targeted isolation with de novo NMR structure elucidation, we herein identify five additional chlorin compounds from O. sarsii and its deep-sea relative O. ooplax: 10S-Hydroxypheophorbide a (2), Pheophorbide a (3), Pyropheophorbide a (4), (3S,4S,21R)-14-Ethyl-9-(hydroxymethyl)-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (5), and (3S,4S,21R)-14-Ethyl-21-hydroxy-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (6). Chlorins 5 and 6 have not been previously reported in natural sources. Interestingly, low amounts of chlorins 1-4 and 6 could also be identified in a distant species, the basket star Gorgonocephalus cf. eucnemis, demonstrating that chlorins are produced by a wide spectrum of marine invertebrates of the class Ophiuroidea. Following the purification of these major Ophiura chlorin metabolites, we discovered the significant singlet oxygen quantum yield upon their photoinduction and the resulting phototoxicity against triple-negative breast cancer BT-20 cells. These studies identify an arsenal of brittle star chlorins as natural photosensitizers with potential photodynamic therapy applications.

15.
Mar Drugs ; 20(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36421986

ABSTRACT

Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.


Subject(s)
Biological Products , Neurodegenerative Diseases , Humans , Biological Products/pharmacology , Biological Products/therapeutic use , Neurodegenerative Diseases/drug therapy , Drug Discovery , Russia
16.
Front Pharmacol ; 13: 1045102, 2022.
Article in English | MEDLINE | ID: mdl-36386148

ABSTRACT

The Wnt-pathway has a critical role in development and tissue homeostasis and has attracted increased attention to develop anticancer drugs due to its aberrant activation in many cancers. In this study, we identified a novel small molecule series with a thienopyrimidine scaffold acting as a downstream inhibitor of the ß-catenin-dependent Wnt-pathway. This novel chemotype was investigated using Wnt-dependent triple-negative breast cancer (TNBC) cell lines. Structure activity relationship (SAR) exploration led to identification of low micromolar compounds such as 5a, 5d, 5e and a novel series with quinazoline scaffold such as 9d. Further investigation showed translation of activity to inhibit cancer survival of HCC1395 and MDA-MB-468 TNBC cell lines without affecting a non-cancerous breast epithelial cell line MCF10a. This anti-proliferative effect was synergistic to docetaxel treatment. Collectively, we identified novel chemotypes acting as a downstream inhibitor of ß-catenin-dependent Wnt-pathway that could expand therapeutic options to manage TNBC.

17.
Sci Adv ; 8(40): eabn9350, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36206333

ABSTRACT

De novo point mutations in GNAO1, gene encoding the major neuronal G protein Gαo, have recently emerged in patients with pediatric encephalopathy having motor, developmental, and epileptic dysfunctions. Half of clinical cases affect codons Gly203, Arg209, or Glu246; we show that these mutations accelerate GTP uptake and inactivate GTP hydrolysis through displacement Gln205 critical for GTP hydrolysis, resulting in constitutive GTP binding by Gαo. However, the mutants fail to adopt the activated conformation and display aberrant interactions with signaling partners. Through high-throughput screening of approved drugs, we identify zinc pyrithione and Zn2+ as agents restoring active conformation, GTPase activity, and cellular interactions of the encephalopathy mutants, with negligible effects on wild-type Gαo. We describe a Drosophila model of GNAO1 encephalopathy where dietary zinc restores the motor function and longevity of the mutant flies. Zinc supplements are approved for diverse human neurological conditions. Our work provides insights into the molecular etiology of GNAO1 encephalopathy and defines a potential therapy for the patients.

18.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683724

ABSTRACT

In diverse living organisms, bionanocoatings provide multiple functionalities, to the surfaces they cover. We have, previously, identified the molecular mechanisms of Turing-based self-assembly of insect corneal nanocoatings and developed forward-engineering approaches to construct multifunctional soft bionic nanocoatings, encompassing the Drosophila protein Retinin. Here, we expand the versatility of the bionic nanocoatings, by identifying and using diverse Retinin-like proteins and different methods of their metallization, using nickel, silver, and copper ions. Comparative assessment, of the resulting bactericidal, antiviral, and cytotoxic properties, identifies the best protocols, to construct safe and anti-infective metalized bionic nanocoatings. Upscaled application of these protocols, to various public surfaces, may represent a safe and economic approach to limit hazardous infections.

19.
Front Chem ; 10: 881298, 2022.
Article in English | MEDLINE | ID: mdl-35518712

ABSTRACT

The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancer and triple-negative breast cancer (TNBC) in particular depend upon Wnt pathway overactivation. Despite this importance, no Wnt pathway-targeting drugs are currently available, which necessitates novel approaches to search for therapeutically relevant compounds targeting this oncogenic pathway. Stilbene analogs represent an under-explored field of therapeutic natural products research. In the present work, a library of complex stilbene derivatives was obtained through biotransformation of a mixture of resveratrol and pterostilbene using the enzymatic secretome of Botrytis cinerea. To improve the chemodiversity, the reactions were performed using i-PrOH, n-BuOH, i-BuOH, EtOH, or MeOH as cosolvents. Using this strategy, a series of 73 unusual derivatives was generated distributed among 6 scaffolds; 55 derivatives represent novel compounds. The structure of each compound isolated was determined by nuclear magnetic resonance and high-resolution mass spectrometry. The inhibitory activity of the isolated compounds against the oncogenic Wnt pathway was comprehensively quantified and correlated with their capacity to inhibit the growth of the cancer cells, leading to insights into structure-activity relationships of the derivatives. Finally, we have dissected mechanistic details of the stilbene derivatives activity within the pathway.

20.
Nat Commun ; 13(1): 2072, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440597

ABSTRACT

Peripheral membrane proteins (PMPs) associate with cellular membranes through post-translational modifications like S-palmitoylation. The Golgi apparatus is generally viewed as the transitory station where palmitoyl acyltransferases (PATs) modify PMPs, which are then transported to their ultimate destinations such as the plasma membrane (PM). However, little substrate specificity among the many PATs has been determined. Here we describe the inherent partitioning of Gαo - α-subunit of heterotrimeric Go proteins - to PM and Golgi, independent from Golgi-to-PM transport. A minimal code within Gαo N-terminus governs its compartmentalization and re-coding produces G protein versions with shifted localization. We establish the S-palmitoylation at the outer nuclear membrane assay ("SwissKASH") to probe substrate specificity of PATs in intact cells. With this assay, we show that PATs localizing to different membrane compartments display remarkable substrate selectivity, which is the basis for PMP compartmentalization. Our findings uncover a mechanism governing protein localization and establish the basis for innovative drug discovery.


Subject(s)
Acyltransferases , Lipoylation , Acyltransferases/metabolism , Cell Membrane/metabolism , Golgi Apparatus/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...