Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Ther Adv Infect Dis ; 11: 20499361241255261, 2024.
Article in English | MEDLINE | ID: mdl-38812710

ABSTRACT

Background: Despite the increased frequency of oropharyngeal candidiasis among people living with human immunodeficiency virus (HIV), its management is no longer effective due to empirical treatment and emergence of antifungal resistance (AFR). This study sought to investigate the prevalence of oropharyngeal candidiasis and assess the antifungal susceptibility profile of oropharyngeal Candida species isolated from people living with human immunodeficiency virus. Additionally, we evaluated the correlation between oropharyngeal candidiasis and CD4 T cell as well as viral load counts. Methods: A descriptive cross-sectional study was carried out from April to October 2023 in which 384 people living with HIV underwent clinical examination for oral lesions. Oropharyngeal swabs were collected and cultured on Sabouraud Dextrose agar to isolate Candida species which were identified using the matrix assisted laser desorption ionization time of flight mass spectrometry. Additionally, the antifungal susceptibility profile of Candida isolates to six antifungal drugs was determined using VITEK® (Marcy-l'Étoile, France) compact system. Data on viral load were retrieved from records, and CD4 T cell count test was performed using Becton Dickinson Biosciences fluorescent antibody cell sorter presto. Results: The prevalence of oropharyngeal candidiasis was 7.6%. Oropharyngeal candidiasis was significantly associated with low CD4 T cell count and high viral load. A total of 35 isolates were obtained out of which Candida albicans comprised of 20 (57.1%) while C. tropicalis and C. glabrata comprised 4 (11.4%) each. C. parapsilosis, C. dubliniensis and C. krusei accounted for 2 (5.7%) each. Additionally, 7 (20%) isolates were resistant to fluconazole, 1 (2.9%) to flucytocine and 0.2 (5.7%) isolates were intermediate to caspofungin. However, specific specie isolates like C. albicans showed 20% (4/20), C. glabrata 50% (2/4) and C. krusei 50% (1/2) resistance to fluconazole. Additionally, C. krusei showed 50% resistance to flucytosine. Conclusion: The prevalence of oropharyngeal candidiasis (OPC) among people living with HIV was low, and there was a significant association between OPC and CD4 T cell count as well as viral load. C. albicans was the most frequently isolated oropharyngeal Candida species. C. glabrata and C. krusei exhibited the highest AFR among the non-albicans Candida species. The highest resistance was demonstrated to fluconazole.

2.
Appl Clin Genet ; 17: 33-46, 2024.
Article in English | MEDLINE | ID: mdl-38567200

ABSTRACT

Tuberculosis remains a global health concern, with substantial mortality rates worldwide. Genetic factors play a significant role in influencing susceptibility to tuberculosis. This review examines the current progress in studying polymorphisms within immune genes associated with tuberculosis susceptibility, focusing on African populations. The roles of various proteins, including Toll-like receptors, Dendritic Cell-Specific Intercellular Adhesion Molecule-3 Grabbing Non-Integrin, vitamin D nuclear receptor, soluble C-type lectins such as surfactant proteins A and D, C-type Lectin Domain Family 4 Member E, and mannose-binding lectin, phagocyte cytokines such as Interleukin-1, Interleukin-6, Interleukin-10, Interleukin-12, and Interleukin-18, and chemokines such as Interleukin-8, monocyte chemoattractant protein 1, Regulated upon activation, normal T-cell expressed and secreted are explored in the context of tuberculosis susceptibility. We also address the potential impact of genetic variants on protein functions, as well as how these findings align with the genetic polymorphisms not associated with tuberculosis. Functional studies in model systems provide insights into the intricate host-pathogen interactions and susceptibility mechanisms. Despite progress, gaps in knowledge remain, highlighting the need for further investigations. This review emphasizes the association of Single Nucleotide Polymorphisms with diverse aspects of tuberculosis pathogenesis, including disease detection and Mycobacterium tuberculosis infection.

3.
Infect Drug Resist ; 17: 641-653, 2024.
Article in English | MEDLINE | ID: mdl-38384499

ABSTRACT

Purpose: We determined the phenotypic resistance to third-generation cephalosporins, phenotypic extended spectrum beta-lactamase (ESBL) prevalence, and genotypic prevalence of ESBL-encoding genes blaCTX-M, blaTEM, and blaSHV in Enterobacteriaceae isolated from hematologic cancer patients with febrile neutropenia and bacteremia at the Uganda Cancer Institute (UCI). Patients and Methods: Blood cultures from hematologic cancer patients with febrile neutropenia were processed in BACTEC 9120. E. coli, K. pneumoniae, and Enterobacter spp. isolates were identified using conventional biochemical methods. Antimicrobial susceptibility tests, phenotypic ESBL characterization, and genotypic characterization of the ESBL-encoding genes blaCTX-M, blaTEM, and blaSHV were determined for pure isolates of E. coli, K. pneumoniae, and Enterobacter spp. Results: Two hundred and two patients were included in the study. Median age of patients was 19 years (IQR: 10-30 years). Majority (N=119, 59%) were male patients. Sixty (30%) of the participants had at least one febrile episode due to Enterobacteriaceae. Eighty-three organisms were isolated with E. coli being predominant (45, 54%). Seventy-nine (95%) Enterobacteriaceae were multidrug resistant. The ESBL phenotype was detected in 54/73 (74%) of Enterobacteriaceae that were resistant to third-generation cephalosporins. A higher proportion of Enterobacteriaceae with ESBL-positive phenotype were resistant to piperacillin-tazobactam (p=0.024), gentamicin (p=0.000), ciprofloxacin (p=0.000), and cotrimoxazole (p=0.000) compared to Enterobacteriaceae, which were sensitive to third-generation cephalosporins. The organisms were more susceptible to carbapenems and chloramphenicol than resistant. ESBL-encoding genes (blaCTX-M, blaTEM, and blaSHV) were detected in 55 (75%) of the 73 Enterobacteriaceae that were resistant to third-generation cephalosporins. BlaCTX-M, was the most common ESBL-encoding gene identified with 50 (91%). Conclusion: ESBL-producing Enterobacteriaceae are a predominant cause of bacteremia in hematologic cancer patients at UCI. The most common ESBL-encoding gene identified in the ESBL-PE was blaCTX-M. Resistance to imipenem and meropenem was low.

4.
Bioinform Adv ; 4(1): vbae008, 2024.
Article in English | MEDLINE | ID: mdl-38312948

ABSTRACT

Summary: Human immunodeficiency virus (HIV) remains a public health threat, with drug resistance being a major concern in HIV treatment. Next-generation sequencing (NGS) is a powerful tool for identifying low-abundance drug resistance mutations (LA-DRMs) that conventional Sanger sequencing cannot reliably detect. To fully understand the significance of LA-DRMs, it is necessary to integrate NGS data with clinical and demographic data. However, freely available tools for NGS-based HIV-1 drug resistance analysis do not integrate these data. This poses a challenge in interpretation of the impact of LA-DRMs, mainly for resource-limited settings due to the shortage of bioinformatics expertise. To address this challenge, we present HIVseqDB, a portable, secure, and user-friendly resource for integrating NGS data with associated clinical and demographic data for analysis of HIV drug resistance. HIVseqDB currently supports uploading of NGS data and associated sample data, HIV-1 drug resistance data analysis, browsing of uploaded data, and browsing and visualizing of analysis results. Each function of HIVseqDB corresponds to an individual Django application. This ensures efficient incorporation of additional features with minimal effort. HIVseqDB can be deployed on various computing environments, such as on-premises high-performance computing facilities and cloud-based platforms. Availability and implementation: HIVseqDB is available at https://github.com/AlfredUg/HIVseqDB. A deployed instance of HIVseqDB is available at https://hivseqdb.org.

5.
Sci Rep ; 13(1): 22182, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092870

ABSTRACT

Childhood HBV immunization remains globally fundamental to the elimination of hepatitis B virus (HBV). However, monitoring proportions of HBV vaccine seroprotection and their determinants among African Pediatric recipients is crucial. This study sought to verify extent of immune protection accorded by the HBV vaccine in African children of up to 17 years of age by pooling the prevalence of seroprotection reported by primary studies conducted in the Northern, Western, and Southern African regions. We included 19 eligible articles out of the 197 initially downloaded, published from 1999 to 2021 from African Journals Online (AJOL), EMBASE, Scopus, and PubMed. The study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO), University of York Centre for Reviews and Dissemination, under the registration number CRD42022361277. Significantly higher (p < 0.0001) proportion of HBV vaccine seroprotection (69.07%) was found among children under 15 years of age than children 15-17 years (32.368%), 95% CI [34.2454-39.0847%]. Whereas successful integration of the HBV vaccine on the extended programs on immunizations (EPI) has been a major achievement in the reduction of HBV infection in Africa, markedly reduced HBV vaccine seroprotection is persistently demonstrated among adolescent children 15-17 years of age. Future studies are required to clarify the need for booster dose vaccination in most at risk populations and age groups.


Subject(s)
Hepatitis B Vaccines , Hepatitis B , Adolescent , Child , Humans , Hepatitis B/epidemiology , Hepatitis B/prevention & control , Hepatitis B Antibodies , Hepatitis B Surface Antigens , Hepatitis B virus
6.
Sci Rep ; 13(1): 20507, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993530

ABSTRACT

SARS-CoV-2 undergoes frequent mutations, affecting COVID-19 diagnostics, transmission and vaccine efficacy. Here, we describe the genetic diversity of 49 SARS-CoV-2 samples from Uganda, collected during the COVID-19 waves of 2020/2021. Overall, the samples were similar to previously reported SARS-CoV-2 from Uganda and the Democratic Republic of Congo (DRC). The main lineages were AY.46 and A.23, which are considered to be Delta SARS-CoV-2 variants. Further, a total of 268 unique single nucleotide variants and 1456 mutations were found, with more than seventy percent mutations in the ORF1ab and S genes. The most common mutations were 2042C>G (83.4%), 14143C>T (79.5%), 245T>C (65%), and 1129G>T (51%), which occurred in the S, ORF1ab, ORF7a and N genes, respectively. As well, 28 structural variants-21 insertions and 7 deletions, occurred in 16 samples. Our findings point to the possibility that most SARS-CoV-2 infections in Uganda at the time arose from local spread and were not newly imported. Moreover, the relatedness of variants from Uganda and the DRC reflects high human mobility and interaction between the two countries, which is peculiar to this region of the world.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , Uganda/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Genomics
7.
PLoS One ; 18(6): e0286955, 2023.
Article in English | MEDLINE | ID: mdl-37289837

ABSTRACT

INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as ß-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum ß-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Pregnancy , Humans , Female , Infant, Newborn , Uganda/epidemiology , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases , Klebsiella pneumoniae , Hospitals , Enterobacter , Gram-Negative Bacteria/genetics , Microbial Sensitivity Tests
8.
Retrovirology ; 20(1): 8, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231494

ABSTRACT

BACKGROUND: Several mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups. RESULTS: The percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers (ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death. CONCLUSION: CCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 densities.


Subject(s)
HIV Infections , HIV-1 , Female , Humans , Uganda , HIV Non-Progressors , HIV-1/physiology , CD4-Positive T-Lymphocytes , Receptors, CCR5/genetics , Receptors, CCR5/metabolism
9.
Sci Rep ; 13(1): 5723, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029173

ABSTRACT

Hepatitis B virus (HBV) has ten genotypes (A-J) and over 40 sub-genotypes based on the divergence of ≥ 8% and 4 to < 8% in the complete genome respectively. These genotypes and sub-genotypes influence the disease prognosis, response to therapy and route of viral transmission. Besides, infection with mixed genotypes and recombinant genotypes has also been reported. This study aimed at mapping the de novo genotypes and correlate them with the immigration trends in order to inform future research on the underlying reasons for the relative distribution of HBV genotypes from a large sample size pooled from many primary studies. Data was extracted from 59 full research articles obtained from Scopus, PubMed, EMBASE, Willy library, African Journal Online (AJOL) and Google Scholar. Studies that investigated the genotypes, sub-genotypes, mixed genotypes and recombinant were included. The Z-test and regression were used for the analysis. The study protocol is registered with PROSPERO under the registration number CRD42022300220. Overall, genotype E had the highest pooled prevalence significantly higher than all the other genotypes (P < 0.001). By region, genotype A posted the highest pooled prevalence in eastern and southern Africa, E in west Africa and D in north Africa (P < 0.0001). Regarding the emerging genotypes B and C on the African continent, genotype B was significantly higher in south Africa than C (P < 0.001). In contrast, genotype C was significantly higher in east Africa than west Africa (P < 0.0001). The A1 and D/E were the most diverse sub-genotypes and genotype mixtures respectively. Finally, we observed a general progressive decrease in the prevalence of predominant genotypes but a progressive increase in the less dominant by region. Historical and recent continental and intercontinental migrations can provide a plausible explanation for the HBV genotype distribution pattern on the African continent.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Africa, Northern , Genotype , Emigration and Immigration , Prognosis , Hepatitis B/epidemiology , Hepatitis B/genetics
10.
Sci Rep ; 13(1): 5365, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37005478

ABSTRACT

The free hormone hypothesis postulates that the estimation of free circulating 25 (OH)D may be a better marker of vitamin D status and is of clinical importance compared to total vitamin D fraction. The unbound fraction is involved in biological activities since it is able to penetrate into the cell. Studies have shown that cathelicidin/LL-37 inhibits the growth of Mycobacterium tuberculosis in a vitamin D-dependent manner and therefore adequate vitamin D is required for its expression. The study aimed to determine the association between serum bioavailable and total vitamin D with LL-37 levels in ATB patients, LTBI, and individuals with no TB infection. This was a cross-sectional study in which bioavailable vitamin D and LL-37 levels were measured using competitive ELISA kits and total vitamin D was measured using electrochemilumiscence and consequently determined their association. The mean (SD) bioavailable vitamin D levels of the study participants were 3.8 ng/mL (2.6) and the median (IQR) of LL-37 levels were 320 ng/mL (160, 550 ng/mL). The mean (SD) of total vitamin D levels was 19.0 ng/mL (8.3) ng/mL. Similar weak correlations were observed between the bioavailable and total vitamin D with LL-37 levels, therefore, deviating from our hypothesis.


Subject(s)
Mycobacterium tuberculosis , Vitamin D , Humans , Cathelicidins , Cross-Sectional Studies , Vitamins
11.
Sci Rep ; 13(1): 5516, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015946

ABSTRACT

Genetic characterisation of circulating influenza viruses directs annual vaccine strain selection and mitigation of infection spread. We used next-generation sequencing to locally generate whole genomes from 116 A(H1N1)pdm09 and 118 A(H3N2) positive patient swabs collected across Uganda between 2010 and 2018. We recovered sequences from 92% (215/234) of the swabs, 90% (193/215) of which were whole genomes. The newly-generated sequences were genetically and phylogenetically compared to the WHO-recommended vaccines and other Africa strains sampled since 1994. Uganda strain hemagglutinin (n = 206), neuraminidase (n = 207), and matrix protein (MP, n = 213) sequences had 95.23-99.65%, 95.31-99.79%, and 95.46-100% amino acid similarity to the 2010-2020 season vaccines, respectively, with several mutated hemagglutinin antigenic, receptor binding, and N-linked glycosylation sites. Uganda influenza type-A virus strains sequenced before 2016 clustered uniquely while later strains mixed with other Africa and global strains. We are the first to report novel A(H1N1)pdm09 subclades 6B.1A.3, 6B.1A.5(a,b), and 6B.1A.6 (± T120A) that circulated in Eastern, Western, and Southern Africa in 2017-2019. Africa forms part of the global influenza ecology with high viral genetic diversity, progressive antigenic drift, and local transmissions. For a continent with inadequate health resources and where social distancing is unsustainable, vaccination is the best option. Hence, African stakeholders should prioritise routine genome sequencing and analysis to direct vaccine selection and virus control.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H1N1 Subtype/genetics , Hemagglutinins , Influenza A Virus, H3N2 Subtype , Uganda/epidemiology , Phylogeny , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza Vaccines/genetics , World Health Organization
12.
PLoS One ; 18(3): e0281559, 2023.
Article in English | MEDLINE | ID: mdl-36972254

ABSTRACT

BACKGROUND: The tuberculin skin test is commonly used to diagnose latent tuberculosis infection (LTBI) in resource-limited settings, but its specificity is limited by factors including cross-reactivity with BCG vaccine and environmental mycobacteria. Interferon-gamma release assays (IGRA) overcome this problem by detecting M. tuberculosis complex-specific responses, but studies to determine risk factors for IGRA-positivity in high TB burden settings are lacking. METHODS: We conducted a cross-sectional study to determine factors associated with a positive IGRA by employing the QuantiFERON-TB® Gold-plus (QFT Plus) assay in a cohort of asymptomatic adult TB contacts in Kampala, Uganda. Multivariate logistic regression analysis with forward stepwise logit function was employed to identify independent correlates of QFT Plus-positivity. RESULTS: Of the 202 participants enrolled, 129/202 (64%) were female, 173/202 (86%) had a BCG scar, and 67/202 (33%) were HIV-infected. Overall, 105/192 (54%, 95% CI 0.48-0.62) participants had a positive QFT Plus result. Increased risk of QFT-Plus positivity was independently associated with casual employment/unemployment vs. non-casual employment (adjusted odds ratio (aOR) 2.18, 95% CI 1.01-4.72), a family vs. non-family relation to the index patient (aOR 2.87, 95% CI 1.33-6.18), living in the same vs. a different house as the index (aOR 3.05, 95% CI 1.28-7.29), a higher body mass index (BMI) (aOR per additional kg/m2 1.09, 95% CI 1.00-1.18) and tobacco smoking vs. not (aOR 2.94, 95% CI 1.00-8.60). HIV infection was not associated with QFT-Plus positivity (aOR 0.91, 95% CI 0.42-1.96). CONCLUSION: Interferon Gamma Release Assay positivity in this study population was lower than previously estimated. Tobacco smoking and BMI were determinants of IGRA positivity that were previously unappreciated.


Subject(s)
HIV Infections , Latent Tuberculosis , Tuberculosis , Humans , Adult , Female , Male , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Cross-Sectional Studies , Uganda/epidemiology , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Interferon-gamma Release Tests , Tuberculin Test , HIV Infections/diagnosis , HIV Infections/epidemiology
13.
Chest ; 164(2): 369-380, 2023 08.
Article in English | MEDLINE | ID: mdl-36773933

ABSTRACT

BACKGROUND: Limited data from low-income countries report on respiratory support techniques in COVID-19-associated ARDS. RESEARCH QUESTION: Which respiratory support techniques are used in patients with COVID-19-associated ARDS in Uganda? STUDY DESIGN AND METHODS: A multicenter, prospective, observational study was conducted at 13 Ugandan hospitals during the pandemic and included adults with COVID-19-associated ARDS. Patient characteristics, clinical and laboratory data, initial and most advanced respiratory support techniques, and 28-day mortality were recorded. Standard tests, log-rank tests, and logistic regression analyses were used for statistical analyses. RESULTS: Four hundred ninety-nine patients with COVID-19-associated ARDS (mild, n = 137; moderate, n = 247; and severe, n = 115) were included (ICU admission, 38.9%). Standard oxygen therapy (SOX), high-flow nasal oxygen (HFNO), CPAP, noninvasive ventilation (NIV), and invasive mechanical ventilation (IMV) was used as the first-line (most advanced) respiratory support technique in 37.3% (35.3%), 10% (9.4%), 11.6% (4.8%), 23.4% (14.4%), and 17.6% (36.6%) of patients, respectively. The first-line respiratory support technique was escalated in 19.8% of patients. Twenty-eight-day mortality was 51.9% (mild ARDS, 13.1%; moderate ARDS, 62.3%; severe ARDS, 75.7%; P < .001) and was associated with respiratory support techniques as follows: SOX, 19.9%; HFNO, 31.9%; CPAP, 58.3%; NIV 61.1%; and IMV, 83.9% (P < .001). Proning was used in 79 patients (15.8%; 59 of 79 awake) and was associated with lower mortality (40.5% vs 54%; P = .03). The oxygen saturation to Fio2 ratio (OR, 0.99; 95% CI, 0.98-0.99; P < .001) and respiratory rate (OR, 1.07; 95% CI, 1.03-1.12; P = .002) at admission and NIV (OR, 6.31; 95% CI, 2.29-17.37; P < .001) or IMV (OR, 8.08; 95% CI, 3.52-18.57; P < .001) use were independent risk factors for death. INTERPRETATION: SOX, HFNO, CPAP, NIV, and IMV were used as respiratory support techniques in patients with COVID-19-associated ARDS in Uganda. Although these data are observational, they suggest that the use of SOX and HFNO therapy as well as awake proning are associated with a lower mortality resulting from COVID-19-associated ARDS in a resource-limited setting.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Adult , Humans , COVID-19/complications , COVID-19/therapy , Prospective Studies , Oxygen/therapeutic use , Noninvasive Ventilation/methods , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/drug therapy , Africa South of the Sahara/epidemiology
14.
Microbiol Spectr ; : e0213921, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790203

ABSTRACT

Sub-Saharan Africa has increased morbidity and mortality related to chronic obstructive pulmonary disease (COPD). COPD among people living with HIV (PLWH) has not been well studied in this region, where HIV/AIDS is endemic. Increasing evidence suggests that respiratory microbial composition plays a role in COPD severity. Therefore, we aimed to investigate microbiome patterns and associations among PLWH with COPD in Sub-Saharan Africa. We conducted a cross-sectional study of 200 adults stratified by HIV and COPD in rural Uganda. Induced sputum samples were collected as an easy-to-obtain proxy for the lower respiratory tract microbiota. We performed 16S rRNA gene sequencing and used PICRUSt2 (version 2.2.3) to infer the functional profiles of the microbial community. We used a statistical tool to detect changes in specific taxa that searches and adjusts for confounding factors such as antiretroviral therapy (ART), age, sex, and other participant characteristics. We could cluster the microbial community into three community types whose distribution was shown to be significantly impacted by HIV. Some genera, e.g., Veillonella, Actinomyces, Atopobium, and Filifactor, were significantly enriched in HIV-infected individuals, while the COPD status was significantly associated with Gammaproteobacteria and Selenomonas abundance. Furthermore, reduced bacterial richness and significant enrichment in Campylobacter were associated with HIV-COPD comorbidity. Functional prediction using PICRUSt2 revealed a significant depletion in glutamate degradation capacity pathways in HIV-positive patients. A comparison of our findings with an HIV cohort from the United Kingdom revealed significant differences in the sputum microbiome composition, irrespective of viral suppression. IMPORTANCE Even with ART available, HIV-infected individuals are at high risk of suffering comorbidities, as shown by the high prevalence of noninfectious lung diseases in the HIV population. Recent studies have suggested a role for the respiratory microbiota in driving chronic lung inflammation. The respiratory microbiota was significantly altered among PLWH, with disease persisting up to 3 years post-ART initiation and HIV suppression. The community structure and diversity of the sputum microbiota in COPD are associated with disease severity and clinical outcomes, both in stable COPD and during exacerbations. Therefore, a better understanding of the sputum microbiome among PLWH could improve COPD prognostic and risk stratification strategies. In this study, we observed that in a virologically suppressed HIV cohort in rural Uganda, we could show differences in sputum microbiota stratified by HIV and COPD, reduced bacterial richness, and significant enrichment in Campylobacter associated with HIV-COPD comorbidity.

15.
Environ Sci Pollut Res Int ; 30(12): 34856-34871, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36520281

ABSTRACT

We explored the viability of using air quality as an alternative to aggregated location data from mobile phones in the two most populated cities in Uganda. We accessed air quality and Google mobility data collected from 15th February 2020 to 10th June 2021 and augmented them with mobility restrictions implemented during the COVID-19 lockdown. We determined whether air quality data depicted similar patterns to mobility data before, during, and after the lockdown and determined associations between air quality and mobility by computing Pearson correlation coefficients ([Formula: see text]), conducting multivariable regression with associated confidence intervals (CIs), and visualized the relationships using scatter plots. Residential mobility increased with the stringency of restrictions while both non-residential mobility and air pollution decreased with the stringency of restrictions. In Kampala, PM2.5 was positively correlated with non-residential mobility and negatively correlated with residential mobility. Only correlations between PM2.5 and movement in work and residential places were statistically significant in Wakiso. After controlling for stringency in restrictions, air quality in Kampala was independently correlated with movement in retail and recreation (- 0.55; 95% CI = - 1.01- - 0.10), parks (0.29; 95% CI = 0.03-0.54), transit stations (0.29; 95% CI = 0.16-0.42), work (- 0.25; 95% CI = - 0.43- - 0.08), and residential places (- 1.02; 95% CI = - 1.4- - 0.64). For Wakiso, only the correlation between air quality and residential mobility was statistically significant (- 0.99; 95% CI = - 1.34- - 0.65). These findings suggest that air quality is linked to mobility and thus could be used by public health programs in monitoring movement patterns and the spread of infectious diseases without compromising on individuals' privacy.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Air Pollutants/analysis , Uganda , Cities , Particulate Matter/analysis , Environmental Monitoring , Communicable Disease Control , Air Pollution/analysis
16.
Front Oral Health ; 3: 1004930, 2022.
Article in English | MEDLINE | ID: mdl-36211252

ABSTRACT

Background: Dental caries is a multifactorial disease that affects many people. Even though microorganisms play a crucial role in causing dental caries, diagnosis is routinely macroscopic. In order to improve early detection especially in HIV patients who are disproportionately affected, there is need to reconcile the macroscopic and microscopic characteristics of dental caries. Therefore, the aim of this study was to characterize the oral microbiota profile along the decayed, missing, filled teeth (DMFT) index using amplicon sequencing data. Methods: Amplicon sequencing of the V6-V8 region of the 16S rRNA gene was done on DNA recovered from whole unstimulated saliva of 59 HIV positive and 29 HIV negative individuals. The microbial structure, composition and co-occurrence networks were characterized using QIIME-2, Phyloseq, Microbiome-1.9.2 and Metacoder in R. Results: We characterized the oral microbiota into 2,093 operational taxonomic units (OTUs), 21 phyla and 239 genera from 2.6 million high quality sequence reads. While oral microbiota did not cluster participants into distinct groups that track with the DMFT index, we observed the following: (a) The proportion of accessory microbiota was highest in the high DMFT category while the core size (∼50% of richness) remained relatively stable across all categories. (b) The abundance of core genera such as Stomatobaculum, Peptostreptococcus and Campylobacter was high at onset of dental caries, (c) A general difference in oral microbial biomass. (d) The onset of dental caries (low DMFT) was associated with significantly lower oral microbial entropy. Conclusions: Although oral microbial shifts along the DMFT index were not distinct, we demonstrated the potential utility of microbiota dynamics to characterize oral disease. Therefore, we propose a microbial framework using the DMFT index to better understand dental caries among HIV positive people in resource limited settings.

17.
Afr Health Sci ; 22(1): 581-588, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36032447

ABSTRACT

Background: Diarrhoeagenic Escherichia coli (DEC) is a leading cause of childhood diarrhoea. This study estimated the prevalence of DEC and DEC pathotypes among children with acute diarrhoea in Southern Uganda. Methods: A cross-sectional study was conducted on 267 children less than 5 years with acute diarrhoea, admitted to Rakai General Hospital in Southern Uganda. Faecal samples were collected from the children and processed for isolation of E. coli. The presence of DEC and the distribution of DEC pathotypes were determined by polymerase chain reaction. Results: A total of 102 (38.2%, 102/267) children had DEC of various pathotypes - enteroaggregative E. coli (EAEC) (14.2%); enteropathogenic E. coli (EPEC) (6.7%); enterotoxigenic E. coli (ETEC) (6%); enteroinvasive E. coli (EIEC) (7.5%); enterohemorrhagic E. coli (EHEC) (3%); and cell-detaching E. coli (CDEC) (0.75%). The difference in the overall prevalence of DEC was not significant regarding HIV but individually, EAEC and CDEC were associated with HIV-positive status while ETEC was associated with HIV-negative status. Conclusions: DEC is prevalent in children with acute diarrhoea in Southern Uganda and its identification in children should be considered among strategies for combatting childhood diarrhoea in Africa.


Subject(s)
Escherichia coli Infections , HIV Infections , Child , Cross-Sectional Studies , Diarrhea , Escherichia coli , Feces , Hospitals , Humans , Infant , Uganda
18.
PLoS One ; 17(8): e0272788, 2022.
Article in English | MEDLINE | ID: mdl-36018845

ABSTRACT

BACKGROUND: Tuberculosis remains a major public health problem worldwide accounting for 1.4 million deaths annually. LL-37 is an effector molecule involved in immunity with both antimicrobial and immunomodulatory properties. The purpose of this study was to compare LL-37 circulatory levels among participants with active and latent tuberculosis and to determine its ability to discriminate between the two infectious states. METHODS: A cross-sectional study was performed among 56 active tuberculosis patients, 49 latent tuberculosis individuals, and 43 individuals without tuberculosis infection. The enzyme-linked immunosorbent assay was used to assess LL-37 levels. Data analysis was performed using STATA software and Graph pad Prism version 8. Mann-Whitney U test was used for correlation between variables with two categories and the Kruskal-Wallis test for three or more categories. RESULTS: The study had more female participants than males, with similar median ages across the three groups, 29.5, 25.0, and 23.0 years respectively. Active tuberculosis patients had significantly higher LL-37 levels compared to those with latent tuberculosis and without tuberculosis. The median/interquartile ranges were 318.8 ng/ml (157.9-547.1), 242.2 ng/ml (136.2-579.3), 170.9 ng/ml (129.3-228.3); p = 0.002 respectively. Higher LL-37 was found in the male participant with median/interquartile range, 424.8 ng/ml (226.2-666.8) compared to the females 237.7 ng/ml (129.6-466.6); p = 0.045. LL-37 had better discriminatory potential between active tuberculosis and no tuberculosis (AUC = 0.71, sensitivity 71.4% specificity = 69.8%) than with latent tuberculosis (AUC = 0.55, sensitivity = 71.4%, specificity = 44.9%). There was moderate differentiation between latent tuberculosis and no tuberculosis (AUC = 0.63, sensitivity = 44.9% specificity = 90.7%). CONCLUSION: Significantly higher LL-37 levels were observed among active tuberculosis patients than those without tuberculosis infection and were, therefore able to discriminate between active tuberculosis and other tuberculosis infectious states, especially with no tuberculosis. Further assessment of this biomarker as a screening tool to exclude tuberculosis is required.


Subject(s)
Latent Tuberculosis , Antimicrobial Cationic Peptides , Biomarkers , Cross-Sectional Studies , Female , Humans , Male , Uganda , Cathelicidins
19.
Glob Health Action ; 15(1): 2062175, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35730550

ABSTRACT

Science education and research have the potential to drive profound change in low- and middle-income countries (LMICs) through encouraging innovation, attracting industry, and creating job opportunities. However, in LMICs, research capacity is often limited, and acquisition of funding and access to state-of-the-art technologies is challenging. The Alliance for Global Health and Science (the Alliance) was founded as a partnership between the University of California, Berkeley (USA) and Makerere University (Uganda), with the goal of strengthening Makerere University's capacity for bioscience research. The flagship program of the Alliance partnership is the MU/UCB Biosciences Training Program, an in-country, hands-on workshop model that trains a large number of students from Makerere University in infectious disease and molecular biology research. This approach nucleates training of larger and more diverse groups of students, development of mentoring and bi-directional research partnerships, and support of the local economy. Here, we describe the project, its conception, implementation, challenges, and outcomes of bioscience research workshops. We aim to provide a blueprint for workshop implementation, and create a valuable resource for bioscience research capacity strengthening in LMICs.


Subject(s)
Developing Countries , Global Health , Capacity Building , Humans , Poverty , Students , Universities
20.
Risk Manag Healthc Policy ; 15: 1253-1270, 2022.
Article in English | MEDLINE | ID: mdl-35769499

ABSTRACT

Background: The novel coronavirus disease 2019 (COVID-19) pandemic placed health workers at the frontline of the emergency task force response; a duty that requires professional expertise and confidence to rapidly identify and treat patients with COVID-19. This study explored perceived self-efficacy (PSE) of health care workers (HCWs) in the management of patients with COVID-19 and associated factors in central Uganda. Methods: We recruited 418 HCWs from four national referral hospitals in Uganda. Multivariate linear regression analysis was utilized to determine factors associated with PSE. A p-value > 0.05 was considered statistically significant. Results: Majority of the participants were female, about half were nurses/midwives, and had 10 years of work experience on average. Overall, HCWs reported moderate PSE in managing COVID-19 patients which reduced with increasing severity of the COVID-19 illness. Having a PhD, being a medical doctor, agreeing or completely agreeing that one has knowledge about COVID-19 management, and having COVID-19 management training were significantly associated with increase in one's level of PSE. Conclusion: This study highlights an unsatisfactory, moderate level of PSE among HCWs in the management of patients with COVID-19 in central Uganda. The health sector should focus on improving HCWs' self-efficacy through continuous training of all HCWs in the clinical management of especially the severe and critically ill cases of COVID-19. Non-doctor HCWs should be given priority as they scored lower levels of PSE; yet they are the corner stone of the primary health care system and make majority of the health human resource in low- and middle-income countries. Interventions towards creating a safe working environment for HCWs through provision of adequate infection prevention and control strategies are essential in boosting HCWs confidence to manage COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...