Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 60: 128606, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35123005

ABSTRACT

A new series of fifty-four 2-phenol-4-aryl-6-hydroxyphenylpyridines containing fluorophenyl, trifluoromethylphenyl, and trifluoromethoxy phenyl groups were synthesized and tested for topoisomerase IIα inhibitory and antiproliferative activity against different cancer cell lines in an attempt to look into topoisomerase IIα-targeted prospective anticancer agents to counter the limitations of available treatment options. When compared to positive controls, several compounds 11-12, 37, 50, and 51 showed high antiproliferative activity, while several 4-fluorophenyl substituted compounds 13-14 and 18 showed strong topoisomerase IIα inhibition. Surprisingly, most of the compounds had a significant antiproliferative effect on the HCT15 colorectal adenocarcinoma and T47D breast cancer cell lines. Moreover, compound 12 with para-fluorophenyl at the 4-position and meta-phenolic groups at the 2- and 6-positions inhibited proliferating HeLa cervix adenocarcinoma cells with an IC50 value of 1.28 µM. Based on biological results, the structure-activity relationships of the synthesized derivatives emphasized the significance of 4-trifluoromethoxyphenyl groups for strong antiproliferative activity and 4-fluorophenyl groups for strong topo IIα inhibition. Furthermore, meta- and para-phenolic groups at the 2- and 4-positions are favorable for strong topo IIα inhibitory and antiproliferative activity. The research findings provide insight into the effect of different fluorine functionalities in the discovery of novel topoisomerase IIα-targeted anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type II/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydroxylation , Molecular Structure , Poly-ADP-Ribose Binding Proteins/metabolism , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
2.
Eur J Med Chem ; 226: 113860, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34597897

ABSTRACT

Several anticancer agents have been developed and innovative approaches have been made toward cancer type-specific medicines for cancer treatment. As a continuous effort to develop potential chemotherapeutic agents, a novel series of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines containing amino groups, hydroxyphenyl and fluorine functionalities were designed and synthesized. The compounds were evaluated for topo IIα inhibitory and cytotoxicity against HCT15, and HeLa human cancer cell lines. Among synthesized thirty compounds, the majority exhibited strong topo IIα inhibition and anti-proliferation against HCT15 colorectal adenocarcinoma cell line. The structure-activity relationship study revealed that compounds with -CF3 and -OCF3 substituents at 4- position and 3' or 4'-hydroxyphenyl at 2-position attached to the central pyridine ring displayed potent topo IIα and anti-proliferative activity in colorectal and cervix cancer cell line. In vitro studies provided the evidence that compounds 16, 19, 22, and 28 possess excellent topo IIα inhibition and antiproliferative activity. For a better understanding, topo IIα cleavage complex, EtBr displacement, KI quenching assays and molecular docking of compound 19 was performed and the results revealed the mode of action as a DNA intercalative topo IIα poison inhibitor. The results obtained from this study provide insight into the DNA binding mechanism of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines and alteration in topo IIα inhibitory and antiproliferative activity with modifications in the rigid structure.


Subject(s)
Amines/pharmacology , Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , Drug Discovery , Topoisomerase II Inhibitors/pharmacology , Amines/chemical synthesis , Amines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Tumor Cells, Cultured
3.
Bioorg Chem ; 116: 105349, 2021 11.
Article in English | MEDLINE | ID: mdl-34536927

ABSTRACT

A series of fluorinated and hydroxylated 2,4-diphenyl indenopyridinols were designed and synthesized using l-proline-catalyzed and microwave-assisted synthetic methods for the development of new anticancer agents. Adriamycin and etoposide were used as reference compounds for the evaluation of topo IIα inhibitory and anti-proliferative activity of the synthesized compounds. Exploring the structure-activity relationships of 36 prepared compounds and biological results, most of the compounds with ortho- and para-fluorophenyl at 4-position of indenopyridinol ring displayed strong topo IIα inhibition. In addition, the majority of the ortho- and meta-fluorophenyl substituted compounds 1-24 displayed strong anti-proliferative activity against DU145 prostate cancer cell line compared to the positive controls. Interestingly, compound 4 possessing ortho-phenolic and ortho-fluorophenyl group at 2- and 4-position, respectively of the central pyridine ring showed high anti-proliferative activity (IC50 = 0.82 µM) against T47D human breast cancer cell line, while para-phenolic and para-fluorophenyl substituted compound 36 exhibited potent topo IIα inhibitory activity with 94.7% and 88.6% inhibition at 100 µM and 20 µM concentration, respectively. A systematic comparison between the results of this study and the previous study indicated that minor changes in the position of functional groups in the structure affect the topo IIα inhibitory activity and anti-proliferative activity of the compounds. The findings from this study will provide valuable information to the researchers working on the medicinal chemistry of topoisomerase IIα-targeted anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Indenes/pharmacology , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Pyridines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type II/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indenes/chemical synthesis , Indenes/chemistry , Molecular Structure , Poly-ADP-Ribose Binding Proteins/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
4.
J Med Chem ; 62(17): 8194-8234, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31398033

ABSTRACT

With the aim of developing new effective topoisomerase IIα-targeted anticancer agents, we synthesized a series of hydroxy- and halogenated 2,4-diphenyl indeno[1,2-b]pyridinols using a microwave-assisted single step synthetic method and investigated structure-activity relationships. The majority of compounds with chlorophenyl group at 2-position and phenol group at the 4-position of indeno[1,2-b]pyridinols exhibited potent antiproliferative activity and topoisomerase IIα-selective inhibition. Of the 172 compounds tested, 89 showed highly potent and selective topoisomerase IIα inhibition and antiproliferative activity in the nanomolar range against human T47D breast (2.6 nM) cancer cell lines. In addition, mechanistic studies revealed compound 89 is a nonintercalative topoisomerase II poison, and in vitro studies showed it had promising cytotoxic effects in diverse breast cancer cell lines and was particularly effective at inducing apoptosis in T47D cells. Furthermore, in vivo administration of compound 89 had significant antitumor effects in orthotopic mouse model of breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Breast Neoplasms/drug therapy , DNA Topoisomerases, Type II/metabolism , Drug Discovery , Pyridines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Male , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred ICR , Microwaves , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Tumor Cells, Cultured
5.
Bioorg Chem ; 87: 495-505, 2019 06.
Article in English | MEDLINE | ID: mdl-30927590

ABSTRACT

The design and synthesis of a series of thirty-two halogenated 1-tetralone or 6-amino-1-tetralone chalcone derivatives was achieved by the Claisen-Schmidt condensation reaction and were evaluated for their inhibitory effects against ROS production in LPS-stimulated RAW 264.7 macrophages. It was observed that the introduction of amino moiety into 1-tetralone skeleton greatly increased the inhibitory potency compared to corresponding 1-tetralone chalcones. Among the synthesized compounds, compound 18 which consists of 6-amino-1-tetralone skeleton together with o-fluorobenzylidene showed the most potent ROS inhibitory effect with IC50 value of 0.25 ±â€¯0.13 µM. SAR analysis revealed that amino moiety at the 6th position of 1-tetralone chalcones have an important role for exerting the greater ROS inhibitory potency in LPS-stimulated RAW 264.7 macrophages than those exhibited by 1-tetralone chalcones alone.


Subject(s)
Chalcones/pharmacology , Macrophages/drug effects , Reactive Oxygen Species/antagonists & inhibitors , Tetralones/pharmacology , Animals , Chalcones/chemical synthesis , Chalcones/chemistry , Dose-Response Relationship, Drug , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Molecular Structure , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Tetralones/chemistry
6.
Bioorg Med Chem ; 26(18): 5212-5223, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30262132

ABSTRACT

DNA Topoisomerase IIα (topo IIα) is one of the most effective therapeutic targets to control cancer. In an effort to develop novel and effective topo IIα targeting anti-proliferative agent, a phenolic series of indenopyridinone and indenopyridinol were designed and prepared using efficient multi-component one pot synthetic method. Total twenty-two synthesized compounds were assessed for topo I and IIα inhibition, and anti-proliferation in three different human cancer cell lines. Overall structure-activity relationship study explored the significance of meta-phenolic group at 4-position and para-phenolic group at 2- and/or 4-position of indenopyridinone skeleton for strong topo IIα-selective inhibition and anti-proliferative activity against human cervix (HeLa) and colorectal (HCT15) cell lines. Compound 12 with excellent topo IIα inhibition (93.7%) was confirmed as a DNA intercalator that could be a new promising lead to develop effective topo IIα-targeted anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type I/metabolism , Indenes/pharmacology , Phenols/pharmacology , Pyridones/pharmacology , Topoisomerase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Indenes/chemical synthesis , Indenes/chemistry , Molecular Structure , Phenols/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/chemistry
7.
Bioorg Chem ; 79: 1-18, 2018 09.
Article in English | MEDLINE | ID: mdl-29715635

ABSTRACT

Human DNA topoisomerases (Topos) are essential nuclear enzyme whose level of expression is potential indicator for prediction of responsive result of chemotherapy. Topos has become a key cellular target for most of the anticancer agents that regulates topological problems of DNA during cellular metabolic processes such as replication, transcription, and recombination. Inspired by previous studies of 2,4,6-trisubstituted pyridines to find out safer and effective topoisomerase targeted anticancer agent, twenty-seven 2-phenol-4,6-dichlorophenyl-pyridines were designed, synthesized, and tested for their topo I and IIα inhibitory and anti-proliferative activity. Most of the dichlorinated meta- and para-phenolic series compounds (1-18) exhibited potent and selective topo IIα inhibition along with significant anti-proliferative activity in the HCT-15 and T47D cell lines compared to the positive control, etoposide. Interestingly, dichlorinated ortho-phenolic series compounds (19-27) exhibited potent and dual topo inhibition but very weak anti-proliferative activity in the tested cancer cell lines. Structure-activity relationship with previously synthesized compounds revealed the importance of chlorine moiety to improve the potency of topo inhibitory activity. Further mechanistic study confirmed that compounds 2 and 12 acted as non-intercalative specific topo IIα catalytic inhibitor with less DNA damage, and induced G1 arrest and apoptosis in HCT-15 and T47D cell lines, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Phenols/pharmacology , Pyridines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , DNA Damage/drug effects , DNA Topoisomerases, Type II/metabolism , Drug Design , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Molecular Structure , Phenols/chemical synthesis , Phenols/chemistry , Poly-ADP-Ribose Binding Proteins/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
8.
Bioorg Med Chem ; 26(8): 1909-1919, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29510948

ABSTRACT

As part of our effort to develop potential topoisomerase IIα (topo IIα) targeting anticancer agents, we systematically designed a new series of hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines. Total eighteen compounds were synthesized and tested for their ability to inhibit the function of topo I and IIα, and proliferation of human breast (T47D), colorectal (HCT15), and cervix (HeLa) cancer cells. Except compound 11, all of the tested compounds displayed selective topo IIα inhibitory activity. Compounds 8-18, 22, 24, and 25 showed excellent topo IIα inhibitory activity than a positive control, etoposide. Most of the compounds appeared to be superior to reference compounds in their antiproliferative activity. Structure-activity relationship (SAR) study has shown that it is better to place the hydroxyphenyl group at the 4-position of the central pyridine for superior topo IIα inhibition and antiproliferative activity. Similarly, the 3'-, or 4'-hydroxyphenyl substitution at the 2- and 4-positon of pyridine ring is important for better activity than 2'-substitution.


Subject(s)
Antineoplastic Agents/chemical synthesis , DNA Topoisomerases, Type II/metabolism , Pyridines/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Benzopyrans/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type II/chemistry , HeLa Cells , Humans , Protein Binding , Pyridines/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/pharmacology
9.
Adv Drug Deliv Rev ; 98: 113-33, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26654747

ABSTRACT

Cancer causes >8.2 million deaths annually worldwide; thus, various cancer treatments have been investigated over the past decades. Among them, combination drug therapy has become extremely popular, and treatment with more than one drug is often necessary to achieve appropriate anticancer efficacy. With the development of nanoformulations and nanoparticulate-based drug delivery, researchers have explored the feasibility of dual delivery of biological therapeutics to overcome the current drawbacks of cancer therapy. Compared with the conventional single drug therapy, dual delivery of therapeutics has provided various synergistic effects in addition to offering multimodality to cancer treatment. In this review, we highlight and summarize three aspects of dual-delivery systems for cancer therapy. These include (1) overcoming drug resistance by the dual delivery of chemical drugs with biological therapeutics for synergistic therapy, (2) targeted and controlled drug release by the dual delivery of drugs with stimuli-responsive nanomaterials, and (3) multimodal theranostics by the dual delivery of drugs and molecular imaging probes. Furthermore, recent developments, perspectives, and new challenges regarding dual-delivery systems for cancer therapy are discussed.


Subject(s)
Antineoplastic Agents/administration & dosage , Biological Products/administration & dosage , Drug Delivery Systems , Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Biological Products/therapeutic use , Combined Modality Therapy , Drug Combinations , Drug Synergism , Humans , Neoplasms/diagnosis
10.
J Control Release ; 205: 218-30, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25681051

ABSTRACT

Congestive heart failure is mostly resulted in a consequence of the limited myocardial regeneration capacity after acute myocardial infarction. Targeted delivery of proangiogenic factors and/or stem cells to the ischemic myocardium is a promising strategy for enhancing their local and sustained therapeutic effects. Herein, we designed an epicardial delivery system of vascular endothelial growth factor (VEGF) and cardiac stem cells (CSCs) using poly(l-lactic acid) (PLLA) mat applied to the acutely infarcted myocardium. The fibrous VEGF-loaded PLLA mat was fabricated by an electrospinning method using PLLA solution emulsified VEGF. This mat not only allowed for sustained release of VEGF for 4weeks but boosted migration and proliferation of both endothelial cells and CSCs in vitro. Furthermore, sustained release of VEGF showed a positive effect on in vitro capillary-like network formation of endothelial cells compared with bolus treatment of VEGF. PLLA mat provided a permissive 3-dimensional (3D) substratum that led to spontaneous cardiomyogenic differentiation of CSCs in vitro. Notably, sustained stimulation by VEGF-loaded PLLA mat resulted in a substantial increase in the expression of proangiogenic mRNAs of CSCs in vitro. The epicardially implanted VEGF-loaded PLLA mat showed modest effects on angiogenesis and cardiomyogenesis in the acutely infarcted hearts. However, co-implantation of VEGF and CSCs using the PLLA mat showed meaningful therapeutic effects on angiogenesis and cardiomyogenesis compared with controls, leading to reduced cardiac remodeling and enhanced global cardiac function. Collectively, the PLLA mat allowed a smart cargo that enabled the sustained release of VEGF and the delivery of CSCs, thereby synergistically inducing angiogenesis and cardiomyogenesis in acute myocardial infarction.


Subject(s)
Angiogenesis Inducing Agents/administration & dosage , Drug Carriers , Lactic Acid/chemistry , Myocardial Infarction/therapy , Myocardium/pathology , Neovascularization, Physiologic/drug effects , Polymers/chemistry , Regeneration/drug effects , Regenerative Medicine/methods , Stem Cell Transplantation , Stem Cells/physiology , Tissue Scaffolds , Vascular Endothelial Growth Factor A/administration & dosage , Angiogenesis Inducing Agents/chemistry , Animals , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chemistry, Pharmaceutical , Combined Modality Therapy , Delayed-Action Preparations , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Kinetics , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Phenotype , Polyesters , Rats, Sprague-Dawley , Solubility , Stem Cells/metabolism , Vascular Endothelial Growth Factor A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...