Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961129

ABSTRACT

Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. We investigate how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic links between aging and cancer. Together, these data uncover that epithelial, immune, and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment, and neoplasia risk.

2.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693371

ABSTRACT

Oncogenic fusions involving transcription factors are present in the majority of pediatric leukemias; however, the context-specific mechanisms they employ to drive cancer remain poorly understood. CBFA2T3-GLIS2 (C/G) fusions occur in treatment-refractory acute myeloid leukemias and are restricted to young children. To understand how the C/G fusion drives oncogenesis we applied CUT&RUN chromatin profiling to an umbilical cord blood/endothelial cell (EC) co-culture model of C/G AML that recapitulates the biology of this malignancy. We find C/G fusion binding is mediated by its zinc finger domains. Integration of fusion binding sites in C/G- transduced cells with Polycomb Repressive Complex 2 (PRC2) sites in control cord blood cells identifies MYCN, ZFPM1, ZBTB16 and LMO2 as direct C/G targets. Transcriptomic analysis of a large pediatric AML cohort shows that these genes are upregulated in C/G patient samples. Single cell RNA-sequencing of umbilical cord blood identifies a population of megakaryocyte precursors that already express many of these genes despite lacking the fusion. By integrating CUT&RUN data with CRISPR dependency screens we identify BRG1/SMARCA4 as a vulnerability in C/G AML. BRG1 profiling in C/G patient-derived cell lines shows that the CBFA2T3 locus is a binding site, and treatment with clinically-available BRG1 inhibitors reduces fusion levels and downstream C/G targets including N-MYC, resulting in C/G leukemia cell death and extending survival in a murine xenograft model.

3.
Aging Cell ; 22(4): e13792, 2023 04.
Article in English | MEDLINE | ID: mdl-36840360

ABSTRACT

Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age.


Subject(s)
Proto-Oncogene Proteins c-fos , Transcription Factor AP-1 , Animals , Humans , Mice , Aging/genetics , Interleukin-6/metabolism , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcriptional Activation
4.
Plant J ; 97(4): 646-660, 2019 02.
Article in English | MEDLINE | ID: mdl-30407670

ABSTRACT

The NLR-receptor RPP7 mediates race-specific immunity in Arabidopsis. Previous screens for enhanced downy mildew (edm) mutants identified the co-chaperone SGT1b (EDM1) and the PHD-finger protein EDM2 as critical regulators of RPP7. Here, we describe a third edm mutant compromised in RPP7 immunity, edm3. EDM3 encodes a nuclear-localized protein featuring an RNA-recognition motif. Like EDM2, EDM3 promotes histone H3 lysine 9 dimethylation (H3K9me2) at RPP7. Global profiling of H3K9me2 showed EDM3 to affect this silencing mark at a large set of loci. Importantly, both EDM3 and EDM2 co-associate in vivo with H3K9me2-marked chromatin and transcripts at a critical proximal polyadenylation site of RPP7, where they suppress proximal transcript polyadeylation/termination. Our results highlight the complexity of plant NLR gene regulation, and establish a functional and physical link between a histone mark and NLR-transcript processing.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
5.
Environ Sci Technol ; 50(18): 10255-63, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27574916

ABSTRACT

Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production volume organophosphate-based plasticizer and flame retardant widely used within the United States. Using zebrafish as a model, the objectives of this study were to determine whether (1) TDCIPP inhibits DNA methyltransferase (DNMT) within embryonic nuclear extracts; (2) uptake of TDCIPP from 0.75 h postfertilization (hpf, 2-cell) to 2 hpf (64-cell) or 6 hpf (shield stage) leads to impacts on the early embryonic DNA methylome; and (3) TDCIPP-induced impacts on cytosine methylation are localized to CpG islands within intergenic regions. Within this study, 5-azacytidine (5-azaC, a DNMT inhibitor) was used as a positive control. Although 5-azaC significantly inhibited zebrafish DNMT, TDCIPP did not affect DNMT activity in vitro at concentrations as high as 500 µM. However, rapid embryonic uptake of 5-azaC and TDCIPP from 0.75 to 2 hpf resulted in chemical- and chromosome-specific alterations in cytosine methylation at 2 hpf. Moreover, TDCIPP exposure predominantly resulted in hypomethylation of positions outside of CpG islands and within intragenic (exon) regions of the zebrafish genome. Overall, these findings provide the foundation for monitoring DNA methylation dynamics within zebrafish as well as identifying potential associations among TDCIPP exposure, adverse health outcomes, and DNA methylation status within human populations.


Subject(s)
DNA Methylation/drug effects , Organophosphates , Organophosphorus Compounds/toxicity , Zebrafish , Animals , Flame Retardants , Humans , Phosphates , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism
6.
Hum Mol Genet ; 22(14): 2870-80, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23535821

ABSTRACT

Children with autism have an elevated frequency of large, rare copy number variants (CNVs). However, the global load of deletions or duplications, per se, and their size, location and relationship to clinical manifestations of autism have not been documented. We examined CNV data from 516 individuals with autism or typical development from the population-based Childhood Autism Risks from Genetics and Environment (CHARGE) study. We interrogated 120 regions flanked by segmental duplications (genomic hotspots) for events >50 kbp and the entire genomic backbone for variants >300 kbp using a custom targeted DNA microarray. This analysis was complemented by a separate study of five highly dynamic hotspots associated with autism or developmental delay syndromes, using a finely tiled array platform (>1 kbp) in 142 children matched for gender and ethnicity. In both studies, a significant increase in the number of base pairs of duplication, but not deletion, was associated with autism. Significantly elevated levels of CNV load remained after the removal of rare and likely pathogenic events. Further, the entire CNV load detected with the finely tiled array was contributed by common variants. The impact of this variation was assessed by examining the correlation of clinical outcomes with CNV load. The level of personal and social skills, measured by Vineland Adaptive Behavior Scales, negatively correlated (Spearman's r = -0.13, P = 0.034) with the duplication CNV load for the affected children; the strongest association was found for communication (P = 0.048) and socialization (P = 0.022) scores. We propose that CNV load, predominantly increased genomic base pairs of duplication, predisposes to autism.


Subject(s)
Autistic Disorder/genetics , DNA Copy Number Variations , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Oligonucleotide Array Sequence Analysis , Segmental Duplications, Genomic , Sequence Deletion
7.
BioData Min ; 6(1): 25, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24378202

ABSTRACT

BACKGROUND: The ever-growing wealth of biological information available through multiple comprehensive database repositories can be leveraged for advanced analysis of data. We have now extensively revised and updated the multi-purpose software tool Biofilter that allows researchers to annotate and/or filter data as well as generate gene-gene interaction models based on existing biological knowledge. Biofilter now has the Library of Knowledge Integration (LOKI), for accessing and integrating existing comprehensive database information, including more flexibility for how ambiguity of gene identifiers are handled. We have also updated the way importance scores for interaction models are generated. In addition, Biofilter 2.0 now works with a range of types and formats of data, including single nucleotide polymorphism (SNP) identifiers, rare variant identifiers, base pair positions, gene symbols, genetic regions, and copy number variant (CNV) location information. RESULTS: Biofilter provides a convenient single interface for accessing multiple publicly available human genetic data sources that have been compiled in the supporting database of LOKI. Information within LOKI includes genomic locations of SNPs and genes, as well as known relationships among genes and proteins such as interaction pairs, pathways and ontological categories.Via Biofilter 2.0 researchers can:• Annotate genomic location or region based data, such as results from association studies, or CNV analyses, with relevant biological knowledge for deeper interpretation• Filter genomic location or region based data on biological criteria, such as filtering a series SNPs to retain only SNPs present in specific genes within specific pathways of interest• Generate Predictive Models for gene-gene, SNP-SNP, or CNV-CNV interactions based on biological information, with priority for models to be tested based on biological relevance, thus narrowing the search space and reducing multiple hypothesis-testing. CONCLUSIONS: Biofilter is a software tool that provides a flexible way to use the ever-expanding expert biological knowledge that exists to direct filtering, annotation, and complex predictive model development for elucidating the etiology of complex phenotypic outcomes.

8.
Proc Natl Acad Sci U S A ; 108(30): 12348-53, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21709235

ABSTRACT

The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we report a whole-genome analysis of two animals originating from extreme northwest and southeast Tasmania, the maximal geographic spread, together with the genome from a tumor taken from one of them. A 3.3-Gb de novo assembly of the sequence data from two complementary next-generation sequencing platforms was used to identify 1 million polymorphic genomic positions, roughly one-quarter of the number observed between two genetically distant human genomes. Analysis of 14 complete mitochondrial genomes from current and museum specimens, as well as mitochondrial and nuclear SNP markers in 175 animals, suggests that the observed low genetic diversity in today's population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations.


Subject(s)
Genetic Variation , Marsupialia/genetics , Animals , Breeding , DNA, Mitochondrial/genetics , DNA, Neoplasm/genetics , Extinction, Biological , Facial Neoplasms/genetics , Facial Neoplasms/veterinary , Genetics, Population , Genome, Mitochondrial , Humans , Models, Molecular , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/veterinary , Phylogeny , Polymorphism, Single Nucleotide , Tasmania , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...