Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineered ; 13(6): 14730-14748, 2022 06.
Article in English | MEDLINE | ID: mdl-36098071

ABSTRACT

The increased antibiotic consumption and their improper management led to serious antibiotic pollution and its exposure to the environment develops multidrug resistance in microbes against antibiotics. The entry rate of antibiotics to the environment is much higher than its exclusion; therefore, efficient removal is a high priority to reduce the harmful impact of antibiotics on human health and the environment. Recent developments in cost-effective and efficient biochar preparation are noticeable for their effective removal. Moreover, biochar engineering advancements enhanced biochar remediation performance several folds more than in its pristine forms. Biochar engineering provides several new interactions and bonding abilities with antibiotic pollutants to increase remediation efficiency. Especially heteroatoms-doping significantly increased catalysis of biochar. The main focus of this review is to underline the crucial role of biochar in the abatement of emerging antibiotic pollutants. A detailed analysis of both native and engineered biochar is provided in this article for antibiotic remediation. There has also been discussion of how biochar properties relate to feedstock, production conditions and manufacturing technologies, and engineering techniques. It is possible to produce biochar with different surface functionalities by varying the feedstock or by modifying the pristine biochar with different chemicals and preparing composites. Subsequently, the interaction of biochar with antibiotic pollutants was compared and reviewed. Depending on the surface functionalities of biochar, they offer different types of interactions e.g., π-π stacking, electrostatic, and H-bonding to adsorb on the biochar surface. This review demonstrates how biochar and related composites have optimized for maximum removal performance by regulating key parameters. Furthermore, future research directions and opportunities for biochar research are discussed.


Subject(s)
Environmental Pollutants , Adsorption , Anti-Bacterial Agents , Charcoal/chemistry , Humans
2.
Bioresour Technol ; 358: 127384, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35644454

ABSTRACT

The evolving multidrug resistance in microbes with increasing antibiotic pollution is becoming a severe global crisis. Recent developments on antibiotic remediations by biochar are promising. Advancements in biochar engineering enhanced biochar remediation efficiency to another level through developing new interactions and bonding abilities with antibiotic pollutants. Especially chemical/metal-composite modification significantly increased catalysis of biochar. The review's main focus is to underline biochar efficiency for the abatement of emerging antibiotic pollutants. Moreover, to relate feedstock, production conditions, and engineering techniques with biochar properties. Also, modification strategies are reviewed to obtain biochar or their composites before examining improved remediation potential ranging from 20 to 552 mg g-1 for various antibiotics. Biochar offers different interactions depending on the surface functionalities e.g., π-π stacking, electrostatic, H-bonding, etc. Biochar and related composites have also been reviewed for remarkable properties e.g., photocatalysis, adsorption, and oxidation processes. Furthermore, future research directions and opportunities for biochar research are discussed.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Adsorption , Biodegradation, Environmental , Charcoal , Water Pollutants, Chemical/analysis
3.
Bioresour Technol ; 328: 124829, 2021 May.
Article in English | MEDLINE | ID: mdl-33618185

ABSTRACT

There has been growing research interest in exploiting biochar for cost-effective. removal of different pollutants. Heavy metals, especially copper II (Cu II) is highly toxic and nonbiodegradable pollutants, and has been major source of environmental pollution. In this study adsorption of Cu (II) on seaweed (Ascophyllum nodosum)-derived biochar was systematically examined. The removal efficiency based on surface property of biochar and type of interactions associated with biochar produced at varying pyrolysis conditions were investigated. The highest removal efficiency of Cu (II) from aqueous media was >99% with 223 mg g-1 Cu (II) adsorption capacity observed by biochar derived at 700 °C and pH 5. Langmuir adsorption isotherm described the adsorption mechanisms of Cu (II) on biochar with cationic and anionic electrostatic attractions, surface precipitation, and pore depositions. Thus, this study shows that waste biomass (seaweed) could be a valuable bioresource for heavy metal remediation from various water bodies.


Subject(s)
Ascophyllum , Seaweed , Water Pollutants, Chemical , Adsorption , Charcoal , Copper/analysis , Water , Water Pollutants, Chemical/analysis
4.
Article in English | MEDLINE | ID: mdl-31336632

ABSTRACT

The qualitative and quantitative analysis of 16 polycyclic aromatic hydrocarbons (PAHs) in sludge samples from drinking water treatment plants (DWTP) and wastewater treatment plants (WWTP) were established using gas chromatography-mass spectrometry (GC-MS). The method was suitable to quantify PAHs in the sludge of DWTP and WWTP and it was confirmed by the relevant quality assurance/quality control (QA/QC) procedures. The recovery of individual PAHs in the spiked samples ranged from 74.3% to 108.7%. Detection limits of the analytical procedure were 0.0010-0.0046 mg/kg dw for individual PAHs. This method was used to determine the concentration of PAHs in the selected two DWTP and four WWTP sludge samples. The results showed that the total PAHs (∑PAHs) were in low levels which ranged from 0.0668 to 0.1357 mg/kg dw, and 0.5342-1.0666 mg/kg dw for DWTP and WWTP respectively. The 3- & 4-ring PAHs were predominant in DWTP sludge, ranging from 77.4% to 82.7%; the 4-ring PAHs were predominant in WWTP sludge, ranging from 40.7% to 47.6%. The PAHs of DWTP sludge are mainly composed of 3-ring phenanthrene and anthracene and 4-ring pyrene, and chrysene. The PAHs of WWTP sludge are dominated by 4-ring fluoranthene, pyrene, and chrysene. The detected PAHs concentration should be undoubtedly considered for agriculture in sludge applications based on the limits of the EU regulations. The results of this study can be used for regular monitoring to establish a reference for sludge management and application to agriculture.


Subject(s)
Polycyclic Aromatic Hydrocarbons/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Gas Chromatography-Mass Spectrometry/methods , Waste Disposal, Fluid , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL