Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Publication year range
1.
Adv Bioinformatics ; 2017: 7167691, 2017.
Article in English | MEDLINE | ID: mdl-28191015

ABSTRACT

Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

2.
J Mol Graph Model ; 72: 70-80, 2017 03.
Article in English | MEDLINE | ID: mdl-28064081

ABSTRACT

In this study several commonly used implicit solvent models are compared with respect to their accuracy of estimating solvation energies of small molecules and proteins, as well as desolvation penalty in protein-ligand binding. The test set consists of 19 small proteins, 104 small molecules, and 15 protein-ligand complexes. We compared predicted hydration energies of small molecules with their experimental values; the results of the solvation and desolvation energy calculations for small molecules, proteins and protein-ligand complexes in water were also compared with Thermodynamic Integration calculations based on TIP3P water model and Amber12 force field. The following implicit solvent (water) models considered here are: PCM (Polarized Continuum Model implemented in DISOLV and MCBHSOLV programs), GB (Generalized Born method implemented in DISOLV program, S-GB, and GBNSR6 stand-alone version), COSMO (COnductor-like Screening Model implemented in the DISOLV program and the MOPAC package) and the Poisson-Boltzmann model (implemented in the APBS program). Different parameterizations of the molecules were examined: we compared MMFF94 force field, Amber12 force field and the quantum-chemical semi-empirical PM7 method implemented in the MOPAC package. For small molecules, all of the implicit solvent models tested here yield high correlation coefficients (0.87-0.93) between the calculated solvation energies and the experimental values of hydration energies. For small molecules high correlation (0.82-0.97) with the explicit solvent energies is seen as well. On the other hand, estimated protein solvation energies and protein-ligand binding desolvation energies show substantial discrepancy (up to 10kcal/mol) with the explicit solvent reference. The correlation of polar protein solvation energies and protein-ligand desolvation energies with the corresponding explicit solvent results is 0.65-0.99 and 0.76-0.96 respectively, though this difference in correlations is caused more by different parameterization and less by methods and indicates the need for further improvement of implicit solvent models parameterization. Within the same parameterization, various implicit methods give practically the same correlation with results obtained in explicit solvent model for ligands and proteins: e.g. correlation values of polar ligand solvation energies and the corresponding energies in the frame of explicit solvent were 0.953-0.966 for the APBS program, the GBNSR6 program and all models used in the DISOLV program. The DISOLV program proved to be on a par with the other used programs in the case of proteins and ligands solvation energy calculation. However, the solution of the Poisson-Boltzmann equation (APBS program) and Generalized Born method (implemented in the GBNSR6 program) proved to be the most accurate in calculating the desolvation energies of complexes.


Subject(s)
Models, Molecular , Proteins/metabolism , Solvents/chemistry , Ligands , Protein Binding , Thermodynamics
3.
Biomed Khim ; 61(6): 712-6, 2015.
Article in Russian | MEDLINE | ID: mdl-26716742

ABSTRACT

The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.


Subject(s)
Mitogen-Activated Protein Kinase 1/chemistry , Molecular Docking Simulation , Protein Kinases/chemistry , Thrombin/chemistry , Urokinase-Type Plasminogen Activator/chemistry , Checkpoint Kinase 1 , Humans , Ligands , Molecular Docking Simulation/instrumentation , Molecular Docking Simulation/methods
4.
Bull Exp Biol Med ; 158(5): 700-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25778664

ABSTRACT

Proteolytic activity of urokinase plays an important role in negative remodeling of blood vessels, restenosis, tumor angiogenesis, and metastasizing, which necessitates the development of selective urokinase inhibitors. Using methods of computer modeling (docking, post processing, and direct docking) and quantum chemistry, we selected substances from the large compound database, analyzed their structures, and experimentally verified their inhibitor activity. New urokinase inhibitor candidates were proposed based on the theoretical predictions and experimental verification of compound activities. The process of modifying urokinase inhibitors based on (benzothiazol-3-yl)guanidine was developed. A new urokinase inhibitor (5-brom-benzothiazol-3-yl)guanidine, that can be effective for regulation of vascular remodeling and tumor angiogenesis, was created.


Subject(s)
Blood Proteins/chemistry , Models, Molecular , Urokinase-Type Plasminogen Activator/antagonists & inhibitors
5.
Biomed Res Int ; 2014: 625176, 2014.
Article in English | MEDLINE | ID: mdl-24967388

ABSTRACT

Urokinase-type plasminogen activator (uPA) plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program), postprocessing (DISCORE program), direct generalized docking (FLM program), and the application of the quantum chemical calculations (MOPAC package), search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 µM.


Subject(s)
Blood Proteins/chemistry , Drug Design , Molecular Docking Simulation , Software , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL