Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Food Nutr Res ; 104: 77-137, 2023.
Article in English | MEDLINE | ID: mdl-37236735

ABSTRACT

Worldwide, there has been growing interest in the research, development, and commercialization of functional bioactive components and nutraceuticals. As a result of consumer awareness of the relationship between diet, health, and disease, the consumption of plant-derived bioactive components has recently increased in the past two decades. Phytochemicals are bioactive nutrient plant chemicals in fruits, vegetables, grains, and other plant foods that may provide desirable health benefits beyond essential nutrition. They may reduce the risk of major chronic diseases, cardiovascular diseases, cancer, osteoporosis, diabetes, high blood pressure, and psychotic diseases and have antioxidant, antimicrobial, and antifungal properties, cholesterol-lowering, antithrombotic, or anti-inflammatory effects. Phytochemicals have been recently studied and explored for various purposes, such as pharmaceuticals, agrochemicals, flavors, fragrances, coloring agents, biopesticides, and food additives. These compounds are known as secondary metabolites and are commonly classified as polyphenols, terpenoids (terpenes), tocotrienols and tocopherols, carotenoids, alkaloids and other nitrogen-containing metabolites, stilbenes and lignans, phenolic acids, and glucosinates. Thus, this chapter aims to define the general chemistry, classification, and essential sources of phytochemicals, as well as describe the potential application of phytochemicals in the food and nutraceuticals industry, explaining the main properties of interest of the different compounds. Finally, the leading technologies involving micro and nanoencapsulation of phytochemicals are extensively detailed to protect them against degradation and enhance their solubility, bioavailability, and better applicability in the pharmaceutical, food, and nutraceutical industry. The main challenges and perspectives are detailed.


Subject(s)
Dietary Supplements , Phytochemicals , Antioxidants , Terpenes/analysis , Fruit/chemistry
2.
Compr Rev Food Sci Food Saf ; 22(3): 2043-2080, 2023 05.
Article in English | MEDLINE | ID: mdl-36988015

ABSTRACT

This systematic review aimed to investigate the occurrence of phthalates (phthalic acid esters [PAEs]) in different food matrices, as well as report the main sources of PAEs in food, the potential risks to the population, and the factors that influence its migration from food contact materials (FCMs) to food. Nineteen PAEs were identified, including di-(2-ehtylhexyl) phthalate (DEHP), dibutyl-phthalate (DBP), benzylbutyl phthalate (BBP), diisononyl phthalate (DINP), and diisodecyl phthalate (DIDP) in fruits and vegetables, milk and dairy products, cereals, meat, fish, fat and oils, snacks, condiments and sauces, miscellaneous, and baby food. Fifty-seven values of PAEs were above the legal limits of countries. DEHP is the PAE with the highest incidence, with maximum concentrations above the specific migration limit (SML) for milk and dairy products, oils and fats, fish, cereals, condiments and sauces, meat, and fruits and vegetables. The risk of exceeding the tolerable daily intake (TDI) was high for DEHP and DBP in fish, fat and oils, cereals, and milk and dairy products for children and adults. Fat and oils are the most critical food for DEHP, DBP, BBP, and DINP. Comparing the estimated daily intake (EDI) with the TDI, there was a risk for "milk and dairy products" in adults and for "cereal and cereal products" in children concerning DEHP. "Cereal and cereal products" presented a risk in children and adults concerning DBP. The "fat and oils" category presented a risk in children and adults about DBP and DINP. Temperature, contact time between food and the FCM, fat percent, and acidity positively correlate with the PAE's migration. The contamination occurs in many steps of the production chain.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Animals , Plasticizers/analysis , Phthalic Acids/analysis , Dibutyl Phthalate , Vegetables , Oils
3.
Chemosphere ; 322: 138244, 2023 May.
Article in English | MEDLINE | ID: mdl-36841459

ABSTRACT

Brazil is the third largest exporter of fruits and vegetables in the world and, consequently, uses large amounts of pesticides. Food contamination with pesticide residues (PRs) is a serious concern, especially in developing countries. Several research reports revealed that some Brazilian farmers spray pesticides on fruits and vegetables in large quantities, generating PRs after harvest. Thus, ingestion of food contaminated with PRs can cause adverse health effects. Based on information obtained through a systematic review of essential information from 33 articles, we studied the assessment of potential health risks associated with fruit and vegetable consumption in children and adults from Brazilian states. This study identified 111 PRs belonging to different chemical groups, mainly organophosphates and organochlorines, in 26 fruit and vegetable samples consumed and exported by Brazil. Sixteen of these PRs were above the Maximum Residue Limit (MRL) established by local and international legislation. We did not identify severe acute and chronic dietary risks, but the highest risk values were observed in São Paulo and Santa Catarina, associated with the consumption of tomatoes and sweet peppers due to the high concentrations of organophosphates. A high long-term health risk is associated with the consumption of oranges in São Paulo and grapes in Bahia due to chlorothalonil and procymidone. We also identified that 26 PRs are considered carcinogenic by the United States Environmental Protection Agency (US EPA), and the carcinogenic risk analysis revealed no severe risk in any Brazilian state investigated due to the cumulative hazard index (HI) < 1. However, the highest HI values were in São Paulo due to acephate and carbaryl in sweet pepper and in Bahia due to dichlorvos. This information can help regulatory authorities define new guidelines for pesticide residue limits in fruits and vegetables commonly consumed and exported from Brazil and monitor the quality of commercial formulations.


Subject(s)
Pesticide Residues , Pesticides , Adult , Child , United States , Humans , Pesticide Residues/analysis , Vegetables/chemistry , Fruit/chemistry , Brazil , Pesticides/analysis , Risk Assessment , Organophosphates/analysis , Food Contamination/analysis
4.
J Agric Food Chem ; 71(8): 3651-3657, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36786777

ABSTRACT

Somatic embryogenesis is an essential technology for high productivity in plant culture, and with the advent of nanotechnology, the synergism between these areas could be the answer to developing concepts involving Agriculture 4.0. This perspective permeates both areas, presenting the opportunities and challenges for the consolidation of ideas involving the application of nanoparticles to micropropagation processes (callus induction, preservation, growing, and modification, among others) and also to the production of byproducts (such as biosynthesis of nanoparticles and production of secondary metabolites). Nanotoxicological aspects are also emphasized as well as up-to-date instrumentation involved in these studies.


Subject(s)
Plant Somatic Embryogenesis Techniques , Regeneration , Culture Media , Embryonic Development , Agriculture
5.
Biol Trace Elem Res ; 200(2): 881-903, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33788164

ABSTRACT

Metals, many of which are potentially toxic, are present in the aquatic environment originated from both natural and anthropogenic sources. In these ecosystems, these elements are mostly deposited in the sediment, followed by water dissolution, potentially contaminating resident biota. Among several aquatic animals, crustaceans are considered excellent bioindicators, as they live in close contact with contaminated sediment. The accumulation of metal, whether they are classified as essential, when in excessive quantities or nonessential, not only cause damage to the health of these animals, but also to the man who consumes seafood. Among the main toxic elements to animal and human health are aluminum, arsenic, cadmium, chromium, copper, lead, mercury, nickel and silver. In this context, this systematic review aimed to investigate the dynamics of these metals in water, the main bioaccumulative tissues in crustaceans, the effects of these contaminants on animal and human health, and the regulatory limits for these metals worldwide. A total of 91 articles were selected for this review, and an additional 68 articles not found in the three assessed databases were considered essential and included, totaling 159 articles published between 2010 and 2020. Our results indicate that both chemical speciation and abiotic factors such as pH, oxygen and salinity in aquatic environments affect element bioavailability, dynamics, and toxicity. Among crustaceans, crabs are considered the main bioindicator biological system, with the hepatopancreas appearing as the main bioaccumulator organ. Studies indicate that exposure to these elements may result in nervous, respiratory, and reproductive system effects in both animals and humans. Finally, many studies indicate that the concentrations of these elements in crustaceans intended for human consumption exceed limits established by international organizations, both with regard to seafood metal contents and well as daily, weekly, or monthly intake limits set for humans, indicating consumer health risks.


Subject(s)
Environmental Biomarkers , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Humans , Metals/toxicity , Risk Assessment , Seafood/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Polymers (Basel) ; 13(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202594

ABSTRACT

Several food contact materials (FCMs) contain non-intentionally added substances (NIAS), and most of the substances that migrate from plastic food packaging are unknown. This review aimed to situate the main challenges involving unknown NIAS in plastic food packaging in terms of identification, migration tests, prediction, sample preparation, determination methods and risk assessment trials. Most studies have identified NIAS in plastic materials as polyurethane adhesives (PU), polyethylene terephthalate (PET), polyester coatings, polypropylene materials (PP), multilayers materials, plastic films, polyvinyl chloride (PVC), recycled materials, high-density polyethylene (HDPE) and low-density polyethylene (LDPE). Degradation products are almost the primary source of NIAS in plastic FCMs, most from antioxidants as Irganox 1010 and Irgafos 168, following by oligomers and side reaction products. The NIAS assessment in plastics FCMs is usually made by migration tests under worst-case conditions using food simulants. For predicted NIAS, targeted analytical methods are applied using GC-MS based methods for volatile NIAS and GC-MS and LC-MS based methods for semi- and non-volatile NIAS; non-targeted methods to analyze unknown NIAS in plastic FCMs are applied using GC and LC techniques combined with QTOF mass spectrometry (HRMS). In terms of NIAS risk assessment and prioritization, the threshold of toxicological concern (TTC) concept is the most applied tool for risk assessment. Bioassays with sensitive analytical techniques seem to be an efficient method to identify NIAS and their hazard to human exposure; the combination of genotoxicity testing with analytical chemistry could allow the Cramer class III TTC application to prioritize unknown NIAS. The scientific justification for implementing a molecular weight-based cut-off (<1000 Da) in the risk assessment of FCMs should be reevaluated. Although official guides and opinions are being issued on the subject, the whole chain's alignment is needed, and more specific legislation on the steps to follow to get along with NIAS.

7.
Mar Pollut Bull ; 161(Pt A): 111693, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33022493

ABSTRACT

Arsenic is the most toxic element for humans. Presenting naturally in aquatic ecosystems and due to anthropogenic action, this semi-metal transfers to shellfish through the food chain. This systematic review aims to explain the dynamic of arsenic in the marine aquatic system, investigating factors that affect its bioaccumulation. A total of 64 articles were considered from three databases. The key abiotic factor influencing the presence of arsenic in shellfish is anthropogenic contamination, followed by geographic location. The crucial biotic factor is the genetics of each species of shellfish, including their diet habits, habitat close to the sediment, metabolic abilities, physiological activities of organisms, and metal levels in their habitats and food. Finally, arsenic presents an affinity for specific tissues in shellfish. Despite containing mostly less toxic organic arsenic, shellfish are a relevant source of arsenic in the human diet.


Subject(s)
Arsenic , Diet , Food Contamination , Arsenic/analysis , Ecosystem , Food Contamination/analysis , Humans , Risk Assessment , Seafood/analysis , Shellfish/analysis
8.
Food Chem ; 286: 644-650, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30827659

ABSTRACT

Brazil is a major producer of rice, but there is not enough information about As and Cd in rice grown under different conditions in this country. Here, As and Cd were determined by ICP-MS and species of As by HPLC-ICP-MS in Brazilian husked rice, covering diverse cultivars and regions, as well as upland and flooded production systems. Significant differences were observed for contents of both elements according to the origin of rice. All samples were below the maximum limit for Cd (400 µg/kg) set by national legislation, while nine samples presented total As above the legislation limit (300 µg/kg). From 24 samples analyzed for As species, 42% showed iAs above the European limit for production of food to infants (100 µg/kg). The total As content in samples from Mato Grosso state presented a maximum value of 6 µg/kg, which combined with low Cd content make interesting further studies.


Subject(s)
Arsenic/analysis , Cadmium/analysis , Food Contamination/analysis , Oryza/chemistry , Brazil , Chromatography, High Pressure Liquid , Food Analysis/methods , Humans , Infant , Infant Food/analysis , Mass Spectrometry , Maximum Allowable Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...