Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
medRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38883763

ABSTRACT

The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013-2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample carrying K13 R622I, none of the isolates carried other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations in K13. However, 13% (CI, 9.6-17.2) of isolates had the AP2MU S160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015-2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.

2.
Malar J ; 22(1): 208, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37420265

ABSTRACT

BACKGROUND: Understanding temporal and spatial dynamics of malaria transmission will help to inform effective interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these regions. METHODS: In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained and used for downstream population genomic analyses. RESULTS: The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent (IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related (IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persistence of malaria in this low-transmission region is fueled by parasites "seeding" across the dry season. For recent years, clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis using PCA and t-SNE showed a lack of substantial parasite population structure. CONCLUSION: Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia over 7 years.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Plasmodium falciparum/genetics , Malaria, Falciparum/parasitology , Zambia/epidemiology , Spatial Analysis , Genomics
3.
Am J Trop Med Hyg ; 109(1): 134-137, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37127270

ABSTRACT

Obtaining accurate malaria surveillance data is challenging in low-transmission settings because large sample sizes are required to estimate incidence and prevalence precisely. Serology is an additional tool to document progress toward malaria elimination. An enzyme immunoassay to Plasmodium falciparum lysate was used to estimate age-specific seroprevalence among residents of southern Zambia, where malaria transmission has declined to pre-elimination levels during the past two decades. Plasma was eluted from 3,362 dried blood spots collected during five cross-sectional surveys conducted between 2009 and 2012, and again in 2018. Annual seroconversion rates (SCRs), an estimate of the force of infection, were calculated using a reversible catalytic model. The SCR decreased by two thirds from a level of approximately 0.15/year in 2009 and 2010 to approximately 0.05/year in 2011 and 2012, and then decreased 5-fold to 0.01/year by 2018, demonstrating the utility of serology in documenting progress toward elimination.


Subject(s)
Malaria, Falciparum , Malaria , Humans , Plasmodium falciparum , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Zambia/epidemiology , Seroepidemiologic Studies , Cross-Sectional Studies , Seroconversion , Malaria/epidemiology , Age Factors
4.
Science ; 378(6623): eadd8737, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36454863

ABSTRACT

The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection.

6.
Am J Trop Med Hyg ; 107(4_Suppl): 55-67, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228903

ABSTRACT

For a decade, the Southern and Central Africa International Center of Excellence for Malaria Research has operated with local partners across study sites in Zambia and Zimbabwe that range from hypo- to holoendemic and vary ecologically and entomologically. The burden of malaria and the impact of control measures were assessed in longitudinal cohorts, cross-sectional surveys, passive and reactive case detection, and other observational designs that incorporated multidisciplinary scientific approaches: classical epidemiology, geospatial science, serosurveillance, parasite and mosquito genetics, and vector bionomics. Findings to date have helped elaborate the patterns and possible causes of sustained low-to-moderate transmission in southern Zambia and eastern Zimbabwe and recalcitrant high transmission and fatality in northern Zambia. Cryptic and novel mosquito vectors, asymptomatic parasite reservoirs in older children, residual parasitemia and gametocytemia after treatment, indoor residual spraying timed dyssynchronously to vector abundance, and stockouts of essential malaria commodities, all in the context of intractable rural poverty, appear to explain the persistent malaria burden despite current interventions. Ongoing studies of high-resolution transmission chains, parasite population structures, long-term malaria periodicity, and molecular entomology are further helping to lay new avenues for malaria control in southern and central Africa and similar settings.


Subject(s)
Insecticides , Malaria , Parasites , Africa, Central , Animals , Child , Cross-Sectional Studies , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control , Zambia/epidemiology , Zimbabwe/epidemiology
7.
Am J Trop Med Hyg ; 107(4_Suppl): 68-74, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228913

ABSTRACT

The International Centers of Excellence for Malaria Research (ICEMR) were established by the National Institute of Allergy and Infectious Diseases more than a decade ago to provide multidisciplinary research support to malaria control programs worldwide, operating in endemic areas and contributing technology, expertise, and ultimately policy guidance for malaria control and elimination. The Southern and Central Africa ICEMR has conducted research across three main sites in Zambia and Zimbabwe that differ in ecology, entomology, transmission intensity, and control strategies. Scientific findings led to new policies and action by the national malaria control programs and their partners in the selection of methods, materials, timing, and locations of case management and vector control. Malaria risk maps and predictive models of case detection furnished by the ICEMR informed malaria elimination programming in southern Zambia, and time series analyses of entomological and parasitological data motivated several major changes to indoor residual spray campaigns in northern Zambia. Along the Zimbabwe-Mozambique border, temporal and geospatial data are currently informing investigations into a recent resurgence of malaria. Other ICEMR findings pertaining to parasite and mosquito genetics, human behavior, and clinical epidemiology have similarly yielded immediate and long-term policy implications at each of the sites, often with generalizable conclusions. The ICEMR programs thereby provide rigorous scientific investigations and analyses to national control and elimination programs, without which the impediments to malaria control and their potential solutions would remain understudied.


Subject(s)
Malaria , Mosquito Vectors , Africa, Central , Animals , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control/methods , Policy , Zambia/epidemiology , Zimbabwe/epidemiology
8.
Viruses ; 14(9)2022 08 24.
Article in English | MEDLINE | ID: mdl-36146671

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have significantly impacted the global epidemiology of the pandemic. From December 2020 to April 2022, we conducted genomic surveillance of SARS-CoV-2 in the Southern Province of Zambia, a region that shares international borders with Botswana, Namibia, and Zimbabwe and is a major tourist destination. Genetic analysis of 40 SARS-CoV-2 whole genomes revealed the circulation of Alpha (B.1.1.7), Beta (B.1.351), Delta (AY.116), and multiple Omicron subvariants with the BA.1 subvariant being predominant. Whereas Beta, Delta, and Omicron variants were associated with the second, third, and fourth pandemic waves, respectively, the Alpha variant was not associated with any wave in the country. Phylogenetic analysis showed evidence of local transmission and possible multiple introductions of SARS-CoV-2 VOCs in Zambia from different European and African countries. Across the 40 genomes analysed, a total of 292 mutations were observed, including 182 missense mutations, 66 synonymous mutations, 23 deletions, 9 insertions, 1 stop codon, and 11 mutations in the non-coding region. This study stresses the need for the continued monitoring of SARS-CoV-2 circulation in Zambia, particularly in strategically positioned regions such as the Southern Province which could be at increased risk of introduction of novel VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Codon, Terminator , Genomics , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics , Zambia/epidemiology
9.
BMJ Open ; 12(12): e066763, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36600354

ABSTRACT

OBJECTIVES: To determine the prevalence of COVID-19 postmortem setting in Lusaka, Zambia. DESIGN: A systematic, postmortem prevalence study. SETTING: A busy, inner-city morgue in Lusaka. PARTICIPANTS: We sampled a random subset of all decedents who transited the University Teaching Hospital morgue. We sampled the posterior nasopharynx of decedents using quantitative PCR. Prevalence was weighted to account for age-specific enrolment strategies. INTERVENTIONS: Not applicable-this was an observational study. PRIMARY OUTCOMES: Prevalence of COVID-19 detections by PCR. Results were stratified by setting (facility vs community deaths), age, demographics and geography and time. SECONDARY OUTCOMES: Shifts in viral variants; causal inferences based on cycle threshold values and other features; antemortem testing rates. RESULTS: From 1118 decedents enrolled between January and June 2021, COVID-19 was detected among 32.0% (358/1116). Roughly four COVID-19+ community deaths occurred for every facility death. Antemortem testing occurred for 52.6% (302/574) of facility deaths but only 1.8% (10/544) of community deaths and overall, only ~10% of COVID-19+ deaths were identified in life. During peak transmission periods, COVID-19 was detected in ~90% of all deaths. We observed three waves of transmission that peaked in July 2020, January 2021 and ~June 2021: the AE.1 lineage and the Beta and Delta variants, respectively. PCR signals were strongest among those whose deaths were deemed 'probably due to COVID-19', and weakest among children, with an age-dependent increase in PCR signal intensity. CONCLUSIONS: COVID-19 was common among deceased individuals in Lusaka. Antemortem testing was rarely done, and almost never for community deaths. Suspicion that COVID-19 was the cause of deaths was highest for those with a respiratory syndrome and lowest for individuals <19 years.


Subject(s)
COVID-19 , Child , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Zambia/epidemiology , Prevalence , SARS-CoV-2 , Polymerase Chain Reaction , COVID-19 Testing
10.
Am J Trop Med Hyg ; 104(2): 671-679, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33236715

ABSTRACT

Malaria elimination strategies are designed to more effectively identify and treat infected individuals to interrupt transmission. One strategy, reactive screen-and-treat, starts with passive detection of symptomatic cases at health facilities. Individuals residing within the index case and neighboring households are screened with a malaria rapid diagnostic test (RDT) and treated if positive. However, it is unclear to what extent this strategy is effective in reducing transmission. Reactive screen-and-treat was implemented in Choma district, Southern Province, Zambia, in 2013, in which residents of the index case and neighboring households within 140 m were screened with an RDT. From March 2016 to July 2018, the screening radius was extended to 250-m, and additional follow-up visits at 30 and 90 days were added to evaluate the strategy. Plasmodium falciparum parasite prevalence was measured using an RDT and by quantitative PCR (qPCR). A 24-single nucleotide polymorphism molecular bar-code assay was used to genotype parasites. Eighty-four index case households with 676 residents were enrolled between March 2016 and March 2018. Within each season, parasite prevalence declined significantly in index households at the 30-day visit and remained low at the 90-day visit. However, parasite prevalence was not reduced to zero. Infections identified by qPCR persisted between study visits and were not identified by RDT. Parasites identified within the same household were most genetically related; however, overall parasite relatedness was low and similar across time and space. Thus, despite implementation of a reactive screen-and-treat program, parasitemia was not eliminated, and persisted in targeted households for at least 3 months.


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum/diagnosis , Malaria, Falciparum/transmission , Mass Screening/standards , Plasmodium falciparum/genetics , Adolescent , Adult , Animals , Anopheles/parasitology , Child , Child, Preschool , Cross-Sectional Studies , Family Characteristics , Female , Genotype , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Male , Mass Screening/statistics & numerical data , Parasitemia , Prevalence , Young Adult , Zambia/epidemiology
11.
Am J Trop Med Hyg ; 103(6): 2224-2232, 2020 12.
Article in English | MEDLINE | ID: mdl-33078701

ABSTRACT

Artemether-lumefantrine (AL) is a first-line agent for uncomplicated malaria caused by Plasmodium falciparum. The WHO recommends periodic therapeutic efficacy studies of antimalarial drugs for the detection of malaria parasite drug resistance and to inform national malaria treatment policies. We conducted a therapeutic efficacy study of AL in a high malaria transmission region of northern Zambia from December 2014 to July 2015. One hundred children of ages 6 to 59 months presenting to a rural health clinic with uncomplicated falciparum malaria were admitted for treatment with AL (standard 6-dose regimen) and followed weekly for 5 weeks. Parasite counts were taken every 6 hours during treatment to assess parasite clearance. Recurrent episodes during follow-up (n = 14) were genotyped to distinguish recrudescence from reinfection and to identify drug resistance single nucleotide polymorphisms (SNPs) and multidrug resistance protein 1 (mdr1) copy number variation. Day 7 lumefantrine concentrations were measured for correspondence with posttreatment reinfection. All children who completed the parasite clearance portion of the study (n = 94) were microscopy-negative by 72 hours. The median parasite elimination half-life was 2.7 hours (interquartile range: 2.1-3.3). Genotype-corrected therapeutic efficacy was 98.8% (95% CI: 97.6-100). Purported artemisinin and lumefantrine drug resistance SNPs in atp6, 3D7_1451200, and mdr1 were detected but did not correlate with parasite recurrence, nor did day 7 lumefantrine concentrations. In summary, AL was highly effective for the treatment of uncomplicated falciparum malaria in northern Zambia during the study period. The high incidence of recurrent parasitemia was consistent with reinfection due to high, perennial malaria transmission.


Subject(s)
Antimalarials/pharmacology , Artemether, Lumefantrine Drug Combination/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Child, Preschool , Drug Resistance , Female , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Parasitemia/drug therapy , Parasitemia/parasitology , Zambia/epidemiology
12.
Malar J ; 19(1): 175, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32381005

ABSTRACT

BACKGROUND: Reactive case detection (RCD) seeks to enhance malaria surveillance and control by identifying and treating parasitaemic individuals residing near index cases. In Zambia, this strategy starts with passive detection of symptomatic incident malaria cases at local health facilities or by community health workers, with subsequent home visits to screen-and-treat residents in the index case and neighbouring (secondary) households within a 140-m radius using rapid diagnostic tests (RDTs). However, a small circular radius may not be the most efficient strategy to identify parasitaemic individuals in low-endemic areas with hotspots of malaria transmission. To evaluate if RCD efficiency could be improved by increasing the probability of identifying parasitaemic residents, environmental risk factors and a larger screening radius (250 m) were assessed in a region of low malaria endemicity. METHODS: Between January 12, 2015 and July 26, 2017, 4170 individuals residing in 158 index and 531 secondary households were enrolled and completed a baseline questionnaire in the catchment area of Macha Hospital in Choma District, Southern Province, Zambia. Plasmodium falciparum prevalence was measured using PfHRP2 RDTs and quantitative PCR (qPCR). A Quickbird™ high-resolution satellite image of the catchment area was used to create environmental risk factors in ArcGIS, and generalized estimating equations were used to evaluate associations between risk factors and secondary households with parasitaemic individuals. RESULTS: The parasite prevalence in secondary (non-index case) households was 0.7% by RDT and 1.8% by qPCR. Overall, 8.5% (n = 45) of secondary households had at least one resident with parasitaemia by qPCR or RDT. The risk of a secondary household having a parasitaemic resident was significantly increased in proximity to higher order streams and marginally with increasing distance from index households. The adjusted OR for proximity to third- and fifth-order streams were 2.97 (95% CI 1.04-8.42) and 2.30 (95% CI 1.04-5.09), respectively, and that for distance to index households for each 50 m was 1.24 (95% CI 0.98-1.58). CONCLUSION: Applying proximity to streams as a screening tool, 16% (n = 3) more malaria-positive secondary households were identified compared to using a 140-m circular screening radius. This analysis highlights the potential use of environmental risk factors as a screening strategy to increase RCD efficiency.


Subject(s)
Diagnostic Tests, Routine/statistics & numerical data , Malaria, Falciparum/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Disease Eradication/statistics & numerical data , Humans , Infant , Infant, Newborn , Malaria, Falciparum/prevention & control , Middle Aged , Plasmodium falciparum/isolation & purification , Prevalence , Young Adult , Zambia/epidemiology
13.
J Infect Dis ; 219(8): 1254-1263, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30445612

ABSTRACT

BACKGROUND: Southern Province, Zambia has experienced a dramatic decline in Plasmodium falciparum malaria transmission in the past decade and is targeted for elimination. Zambia's National Malaria Elimination Program recommends reactive case detection (RCD) within 140 m of index households to enhance surveillance and eliminate remaining transmission foci. METHODS: To evaluate whether RCD captures local transmission, we genotyped 26 microsatellites from 106 samples collected from index (n = 27) and secondary (n = 79) cases detected through RCD in the Macha Hospital catchment area between January 2015 and April 2016. RESULTS: Participants from the same RCD event harbored more genetically related parasites than those from different RCD events, suggesting that RCD captures, at least in part, infections related through local transmission. Related parasites clustered in space and time, up to at least 250 m from index households. Spatial analysis identified a putative focal transmission hotspot. CONCLUSIONS: The current RCD strategy detects focal transmission events, although programmatic guidelines to screen within 140 m of index households may fail to capture all secondary cases. This study highlights the utility of parasite genetic data in assessing programmatic interventions, and similar approaches may be useful to malaria elimination programs seeking to tailor intervention strategies to the underlying transmission epidemiology.


Subject(s)
Malaria, Falciparum/transmission , Plasmodium falciparum/genetics , Disease Eradication/methods , Genotyping Techniques , Humans , Malaria, Falciparum/parasitology , Microsatellite Repeats/genetics , Population Surveillance , Spatio-Temporal Analysis , Zambia/epidemiology
14.
Am J Trop Med Hyg ; 98(5): 1382-1388, 2018 05.
Article in English | MEDLINE | ID: mdl-29557330

ABSTRACT

To improve malaria surveillance and achieve elimination, the Zambian National Malaria Elimination Program implemented a reactive test-and-treat program in Southern Province in 2013 in which individuals with rapid diagnostic test (RDT)-confirmed malaria are followed-up at their home within 1 week of diagnosis. Individuals present at the index case household and those residing within 140 m of the index case are tested with an RDT and treated with artemether-lumefantrine if positive. This study evaluated the efficiency of this reactive test-and-treat strategy by characterizing infected individuals missed by the RDT and the current screening radius. The radius was expanded to 250 m, and a quantitative polymerase chain reaction (qPCR) test was performed on dried blood spot specimens. From January 2015 through March 2016, 145 index cases were identified at health centers and health posts. A total of 3,333 individuals residing in 525 households were screened. Excluding index cases, the parasite prevalence was 1.1% by RDT (33 positives of 3,016 participants) and 2.4% by qPCR (73 positives of 3,016 participants). Of the qPCR-positive cases, 62% of 73 individuals tested negative by RDT. Approximately half of the infected individuals resided within the index case household (58% of RDT-positive individuals and 48% of qPCR-positive individuals). The low sensitivity of the RDT and the high proportion of secondary cases within the index case household decreased the efficiency of this reactive test-and-treat strategy. Reactive focal drug administration in index case households would be a more efficient approach to treating infected individuals associated with a symptomatic case.


Subject(s)
Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria/diagnosis , Malaria/drug therapy , Adolescent , Adult , Antigens, Protozoan , Child , Female , Humans , Malaria/epidemiology , Male , Prevalence , Prospective Studies , Protozoan Proteins , Sensitivity and Specificity , Zambia/epidemiology
15.
Malar J ; 16(1): 154, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28420399

ABSTRACT

BACKGROUND: Substantial reductions in the burden of malaria have been documented in parts of sub-Saharan Africa, with elimination strategies and goals being formulated in some regions. Within this context, understanding the epidemiology of low-level malaria transmission is crucial to achieving and sustaining elimination. A 24 single-nucleotide-polymorphism Plasmodium falciparum molecular barcode was used to characterize parasite populations from infected individuals identified through passive and active case detection in an area approaching malaria elimination in southern Zambia. METHODS: The study was conducted in the catchment area of Macha Hospital in Choma District, Southern Province, Zambia, where the parasite prevalence declined over the past decade, from 9.2% in 2008 to less than 1% in 2013. Parasite haplotypes from actively detected, P. falciparum-infected participants enrolled in a serial cross-sectional, community-based cohort study from 2008 to 2013 and from passively detected, P. falciparum-infected individuals enrolled at five rural health centres from 2012 to 2015 were compared. Changes in P. falciparum genetic relatedness, diversity and complexity were analysed as malaria transmission declined. RESULTS: Actively detected cases identified in the community were most commonly rapid diagnostic test negative, asymptomatic and had submicroscopic parasitaemia. Phylogenetic reconstruction using concatenated 24 SNP barcode revealed a separation of parasite haplotypes from passively and actively detected infections, consistent with two genetically distinct parasite populations. For passively detected infections identified at health centres, the proportion of detectable polyclonal infections was consistently low in all seasons, in contrast with actively detected infections in which the proportion of polyclonal infections was high. The mean genetic divergence for passively detected infections was 34.5% for the 2012-2013 transmission season, 37.8% for the 2013-2014 season, and 30.8% for the 2014-2015 season. The mean genetic divergence for actively detected infections was 22.3% in the 2008 season and 29.0% in the 2008-2009 season and 9.9% across the 2012-2014 seasons. CONCLUSIONS: Distinct parasite populations were identified among infected individuals identified through active and passive surveillance, suggesting that infected individuals detected through active surveillance may not have contributed substantially to ongoing transmission. As parasite prevalence and diversity within these individuals declined, resource-intensive efforts to identify the chronically infected reservoir may not be necessary to eliminate malaria in this setting.


Subject(s)
Genotype , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/classification , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide , Adolescent , Adult , Animals , Child , Cross-Sectional Studies , DNA Barcoding, Taxonomic , Female , Haplotypes , Humans , Longitudinal Studies , Male , Parasites , Plasmodium falciparum/genetics , Prevalence , Young Adult , Zambia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...