Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 41(1): 189, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655320

ABSTRACT

BACKGROUND: Deregulation of FGF19-FGFR4 signaling is found in several cancers, including hepatocellular carcinoma (HCC), nominating it for therapeutic targeting. FGF401 is a potent, selective FGFR4 inhibitor with antitumor activity in preclinical models. This study was designed to determine the recommended phase 2 dose (RP2D), characterize PK/PD, and evaluate the safety and efficacy of FGF401 alone and combined with the anti-PD-1 antibody, spartalizumab. METHODS: Patients with HCC or other FGFR4/KLB expressing tumors were enrolled. Dose-escalation was guided by a Bayesian model. Phase 2 dose-expansion enrolled patients with HCC from Asian countries (group1), non-Asian countries (group2), and patients with other solid tumors expressing FGFR4 and KLB (group3). FGF401 and spartalizumab combination was evaluated in patients with HCC. RESULTS: Seventy-four patients were treated in the phase I with single-agent FGF401 at 50 to 150 mg. FGF401 displayed favorable PK characteristics and no food effect when dosed with low-fat meals. The RP2D was established as 120 mg qd. Six of 70 patients experienced grade 3 dose-limiting toxicities: increase in transaminases (n = 4) or blood bilirubin (n = 2). In phase 2, 30 patients in group 1, 36 in group 2, and 20 in group 3 received FGF401. In total, 8 patients experienced objective responses (1 CR, 7 PR; 4 each in phase I and phase II, respectively). Frequent adverse events (AEs) were diarrhea (73.8%), increased AST (47.5%), and ALT (43.8%). Increase in levels of C4, total bile acid, and circulating FGF19, confirmed effective FGFR4 inhibition. Twelve patients received FGF401 plus spartalizumab. RP2D was established as FGF401 120 mg qd and spartalizumab 300 mg Q3W; 2 patients reported PR. CONCLUSIONS: At biologically active doses, FGF401 alone or combined with spartalizumab was safe in patients with FGFR4/KLB-positive tumors including HCC. Preliminary clinical efficacy was observed. Further clinical evaluation of FGF401 using a refined biomarker strategy is warranted. TRIAL REGISTRATION: NCT02325739 .


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Antibodies, Monoclonal, Humanized , Bayes Theorem , Biomarkers , Carcinoma, Hepatocellular/drug therapy , Humans , Liver Neoplasms/drug therapy , Piperazines , Pyridines
2.
CPT Pharmacometrics Syst Pharmacol ; 11(8): 1122-1134, 2022 08.
Article in English | MEDLINE | ID: mdl-35728123

ABSTRACT

Machine learning (ML) opens new perspectives in identifying predictive factors of efficacy among a large number of patients' characteristics in oncology studies. The objective of this work was to combine ML with population pharmacokinetic/pharmacodynamic (PK/PD) modeling of tumor growth inhibition to understand the sources of variability between patients and therefore improve model predictions to support drug development decisions. Data from 127 patients with hepatocellular carcinoma enrolled in a phase I/II study evaluating once-daily oral doses of the fibroblast growth factor receptor FGFR4 kinase inhibitor, Roblitinib (FGF401), were used. Roblitinib  PKs was best described by a two-compartment model with a delayed zero-order absorption and linear elimination. Clinical efficacy using the longitudinal sum of the longest lesion diameter data was described with a population PK/PD model of tumor growth inhibition including resistance to treatment. ML, applying elastic net modeling of time to progression data, was associated with cross-validation, and allowed to derive a composite predictive risk score from a set of 75 patients' baseline characteristics. The two approaches were combined by testing the inclusion of the continuous risk score as a covariate on PD model parameters. The score was found as a significant covariate on the resistance parameter and resulted in 19% reduction of its variability, and 32% variability reduction on the average dose for stasis. The final PK/PD model was used to simulate effect of patients' characteristics on tumor growth inhibition profiles. The proposed methodology can be used to support drug development decisions, especially when large interpatient variability is observed.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Humans , Liver Neoplasms/drug therapy , Machine Learning , Models, Biological , Piperazines , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...