Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 13(14): e4724, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37497456

ABSTRACT

The immune-inhibitory molecule programmed cell death ligand 1 (PD-L1) has been shown to play a role in pathologies such as autoimmunity, infections, and cancer. The expression of PD-L1 not only on cancer cells but also on non-transformed host cells is known to be associated with cancer progression. Generation of PD-L1 deficiency in the murine system enables us to specifically study the role of PD-L1 in physiological processes and diseases. One of the most versatile and easy to use site-specific gene editing tools is the CRISPR/Cas9 system, which is based on an RNA-guided nuclease system. Similar to its predecessors, the Zinc finger nucleases or transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 catalyzes double-strand DNA breaks, which can result in frameshift mutations due to random nucleotide insertions or deletions via non-homologous end joining (NHEJ). Furthermore, although less frequently, CRISPR/Cas9 can lead to insertion of defined sequences due to homology-directed repair (HDR) in the presence of a suitable template. Here, we describe a protocol for the knockout of PD-L1 in the murine C57BL/6 background using CRISPR/Cas9. Targeting of exon 3 coupled with the insertion of a HindIII restriction site leads to a premature stop codon and a loss-of-function phenotype. We describe the targeting strategy as well as founder screening, genotyping, and phenotyping. In comparison to NHEJ-based strategy, the presented approach results in a defined stop codon with comparable efficiency and timelines as NHEJ, generates convenient founder screening and genotyping options, and can be swiftly adapted to other targets.

2.
Virusdisease ; 32(4): 766-769, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34568519

ABSTRACT

The increased demand for SARS-CoV-2 molecular testing during the COVID-19 pandemic resulted in shortage of reagents and consumables. Pooling of specimens could be an alternative strategy to overcome these problems. Initial evaluation of the pooling strategy was performed using known positive specimens, previously tested individually, and their respective pools of plus four (5X), five (6X) and nine (10X) known negative specimens. Subsequently, 35 positive 5X and 35 positive 6X pools containing only one positive specimen per pool were analyzed prospectively regarding the difference in Ct values in pooled versus individual specimens. When the number of samples in the pool were five or six, the average deviation of Ct differences was < 1; therefore, this strategy was followed in the prospective study. Significant difference in Ct values was observed in positive specimens when tested individually and in 5X pools (p = 0.006), while the difference was not significant when positive specimens were tested individually and in 6X pools (p = 0.07). The difference in Ct values was not significant between the 5X and 6X pools. Testing in pools of five or six specimens is a reliable option for SARS-CoV-2 RNA detection when mass testing is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...