Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792161

ABSTRACT

Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.


Subject(s)
Antioxidants , Electricity , Microwaves , Olea , Pressure , Olea/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Solvents/chemistry , Olive Oil/chemistry , Methanol/chemistry
2.
Foods ; 13(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38201199

ABSTRACT

From a quality standpoint, it is desirable to preserve the characteristics of fresh-cut potatoes at their peak. However, due to the mechanical tissue damage during the cutting process, potatoes are susceptible to enzymatic browning. This study pertains to the selection of the appropriate osmotic dehydration (OD), high pressure (HP), and pulsed electric fields (PEF) processing conditions leading to effective quality retention of potato cuts. PEF (0.5 kV/cm, 200 pulses) or HP (400 MPa, 1 min) treatments prior to OD (35 °C, 120 min) were found to promote the retention of the overall quality (texture and color) of the samples. The incorporation of anti-browning agents (ascorbic acid and papain) into the osmotic solution improved the color retention, especially when combined with PEF or HP due to increased solid uptake (during OD) as indicated by DEI index (2.30, 1.93, and 2.10 for OD treated 120 min, non-pre-treated, HP pre-treated, and PEF pre-treated samples, respectively). PEF and HP combined with OD and anti-browning agent enrichment are sought to improve the quality and microbial stability of fresh-cut potatoes during refrigerator storage. Untreated fresh-cut potatoes were characterized by color degradation from the 2nd day of storage at 4 °C, and presented microbial growth (total viable counts: 6 log (CFU)/g) at day 6, whereas pre-treated potato samples retained their color and microbiologically stability after 6 days of cold storage (total viable counts, <4 log(CFU)/g).

3.
Foods ; 12(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36766034

ABSTRACT

Active packaging with CO2-emitters (pads) has recently been used for shelf-life extension of fresh fish. The aim of this study was to identify consumer attitudes towards fresh fish packaging, to examine whether Greek consumers prefer active packaging with pad over active packaging without pad, to investigate any perceived differences in the sensory freshness of the fish, and to relate consumer perception to volatile composition of fish fillets. In total, 274 consumers participated in the study which included freshness sensory evaluation of gilthead seabream (Sparus aurata) and seabass (Dicentrarchuslabrax), whole-gutted and filleted, raw and cooked, at high quality and at the end of high-quality shelf-life. Samples were packed under modified atmosphere either with a pad or without. Results showed that consumers preferred packages with pads, especially at the end of high quality shelf-life. They perceived raw samples packed with a pad to be fresher and closer to the ideal product, and also had a higher purchase intention towards them. Cooked samples were not perceived differently. Consumers' perception was in accordance with the GC-MS findings in the volatile compounds that function as freshness or spoilage indicators. Most participants were positive towards fresh fish packaging although they usually buy unpacked fresh fish. Our results suggest that active packaging with CO2 emitters contribute to freshness preservation and that it has a positive potential in the Greek market.

4.
Foods ; 11(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35954012

ABSTRACT

The study investigated the effect of active modified atmosphere packaging (20% CO2-60% N2-20% O2) with CO2 emitters (MAP-PAD) and conventional MAP (MAP) on the quality and shelf-life of gilthead seabream fillets during chill storage, while the most appropriate enzymatic Time Temperature Integrators (TTI) were selected for monitoring their shelf-life at isothermal and variable temperature storage conditions (Teff = 4.8 °C). The concentration of CO2 and O2 in the headspace of the package, volatile compounds and of the microbial population were monitored during storage. The kinetic parameters for bacterial growth were estimated at 0-10 °C using the Baranyi growth model. The MAP-PAD samples presented significantly lower microbial growth rates and longer lag phases compared to the MAP samples, leading to significant shelf-life extension: 2 days of extension at 2.5 °C and 5 °C, while 50% extension at variable conditions (Teff = 4.8 °C). CO2 emitters in the package improved the chemical freshness (K-values) and volatile compounds (characterizing freshness). The responses of different enzymatic TTI were modeled as the function of enzyme concentration, temperature and storage time. The activation energy (Ea) ranged from 97 to 148 kJ mol-1, allowing the selection of appropriate TTIs for the shelf-life monitoring of each fish product: LP-150U for the MAP and M-25U for the MAP-PAD samples. The validation experiment at Teff = 4.8 °C confirmed the applicability of Arrhenius-type models, as well as the use of TTIs as effective chill chain management tools during distribution and storage.

5.
Molecules ; 26(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810031

ABSTRACT

Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.


Subject(s)
Antioxidants , Nanocapsules/chemistry , Olea/chemistry , Phenols , Plant Extracts/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Chromatography, High Pressure Liquid , Emulsions , Phenols/chemistry , Phenols/isolation & purification , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...