Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36985980

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) modified by introducing non-six-membered ring defects, such as five- and seven-membered rings, have attracted considerable attention because their conductivity is enhanced by increasing the electronic density of states at the Fermi energy level. However, no preparation method exists to efficiently introduce non-six-membered ring defects into SWCNTs. Herein, we attempt to introduce non-six-membered ring defects into SWCNTs by defect rearrangement of the nanotube framework using a fluorination-defluorination process. Defect-introduced SWCNTs were fabricated from SWCNTs fluorinated at 25 °C for different reaction times. Their structures were evaluated, and their conductivities were measured by operating a temperature program. Structural analysis of the defect-induced SWCNTs using X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, and visible-near-infrared spectroscopy did not reveal the presence of non-six-membered ring defects in the SWCNTs but indicated the introduction of vacancy defects. Meanwhile, conductivity measurements performed by operating a temperature program showed that the defluorinated SWCNTs prepared from SWCNTs fluorinated for 3 min (deF-RT-3m) exhibited decreased conductivity owing to the adsorption of water molecules to non-six-membered ring defects, thereby implying the possibility of non-six-membered ring defects being introduced into deF-RT-3m.

2.
J Mech Behav Biomed Mater ; 18: 232-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23274485

ABSTRACT

Hydroxyapatite (HAp) films were deposited on a ß-type titanium alloy, Ti-29Nb-13Ta-4.6Zr (TNTZ), by metal organic chemical vapor deposition (MOCVD) in order to improve its hard-tissue compatibility. The surface morphologies of TNTZ substrates were changed by acid treatments and mechanical polishing prior to the HAp film deposition. The adhesive strength of the HAp films formed on TNTZ substrates treated with an HF solution increased to twice that of the HAp film deposited on a TNTZ substrate with a mirror-like finish. Complex microstructures with deeply etched grain boundaries, formed on the TNTZ substrates after immersion in the HF solution, were responsible for the increase in the adhesive strength of the HAp film caused by an interlocking effect. The HAp films on TNTZ substrates treated with a H(2)SO(4) solution exhibited lower adhesive strength than HAp films on TNTZ substrates treated with HF solution, regardless of the surface roughness of the substrates. Additionally, acid treatments using HNO(3) and H(2)O(2) solutions did not change the surface morphologies of the TNTZ substrates. The complex microstructures with deeply etched grain boundaries and nanosized asperities formed on the TNTZ substrates are important factors in the improvement of the adhesive strengths of HAp films deposited on TNTZ substrates.


Subject(s)
Alloys/chemistry , Durapatite/chemistry , Adhesiveness , Hydrogen-Ion Concentration , Mechanical Phenomena , Niobium/chemistry , Sulfuric Acids/chemistry , Tantalum/chemistry , Titanium/chemistry , Volatilization , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...