Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Oral Health ; 24(1): 881, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095752

ABSTRACT

BACKGROUND: Hyposalivation is treated using oral cholinergic drugs; however, systemic side effects occasionally lead to discontinuation of treatment. We aimed to investigate the effects of transdermal pilocarpine on the salivary gland skin on saliva secretion and safety in rats. METHODS: Pilocarpine was administered to rats orally (0.5 mg/kg) or topically on the salivary gland skin (5 mg/body). Saliva volume, the number of sweat dots, and fecal weight were measured along with pilocarpine concentration in plasma and submandibular gland tissues. RESULTS: Saliva volume significantly increased 0.5 h after oral administration and 0.5, 3, and 12 h after topical administration. Fecal weight and sweat dots increased significantly 1 h after oral administration; however, no changes were observed after topical application. The pilocarpine concentration in the submandibular gland tissues of the topical group was higher than that in the oral group at 0.5, 3, and 12 h of administration. CONCLUSIONS: Pilocarpine application to salivary gland skin persistently increased salivary volume in rats without inducing sweating or diarrhea. Transdermal pilocarpine applied to the skin over the salivary glands may be an effective and safe treatment option for hyposalivation.


Subject(s)
Administration, Cutaneous , Pilocarpine , Salivary Glands , Salivation , Xerostomia , Pilocarpine/administration & dosage , Pilocarpine/pharmacology , Animals , Salivation/drug effects , Rats , Male , Salivary Glands/drug effects , Salivary Glands/metabolism , Xerostomia/chemically induced , Xerostomia/drug therapy , Muscarinic Agonists/administration & dosage , Muscarinic Agonists/pharmacology , Saliva/metabolism , Saliva/chemistry , Administration, Oral , Submandibular Gland/drug effects , Submandibular Gland/metabolism , Rats, Sprague-Dawley
2.
Biol Pharm Bull ; 46(12): 1805-1809, 2023.
Article in English | MEDLINE | ID: mdl-38044099

ABSTRACT

Transdermal scopolamine applied to the postauricular area is used to treat drooling. We investigated the duration of action of scopolamine ointment and the effect of the application site on drug efficacy and concentration in the salivary glands of rats. Scopolamine ointment was applied to the skin over the salivary glands (SSG) and back (SB). Saliva volume was measured after intraperitoneal administration of pilocarpine. Blood and salivary glands were collected after scopolamine ointment application, and scopolamine concentrations in the plasma and salivary glands were measured. Saliva volume after application in the SSG group was significantly lower at all time points than in the non-treated group, and the change in saliva volume in the SSG group was greater than that in the SB group at all time points. This suggests that applying scopolamine ointment to the SSG strongly suppresses salivary secretion. Scopolamine concentration in the salivary glands of the SSG group was significantly higher at 9 h. The change in the efficacy of scopolamine ointment depending on the application site was due to the difference in transfer to the salivary glands. Transdermal administration of scopolamine to the skin over the salivary glands may have high efficiency in treating drooling.


Subject(s)
Scopolamine , Sialorrhea , Rats , Animals , Administration, Cutaneous , Sialorrhea/drug therapy , Ointments/therapeutic use , Salivary Glands
3.
Neuropharmacology ; 239: 109672, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37506875

ABSTRACT

Previous studies postulated that chronic administration of varenicline, a partial and full agonist at α4ß2 and α7 nicotinic acetylcholine receptors (nAChRs), respectively, enhances recognition memory. However, whether its acute administration is effective, on which brain region(s) it acts, and in what signaling it is involved, remain unknown. To address these issues, we conducted a novel object recognition test using male C57BL/6J mice, focusing on the medial prefrontal cortex (mPFC), a brain region associated with nicotine-induced enhancement of recognition memory. Systemic administration of varenicline before the training dose-dependently enhanced recognition memory. Intra-mPFC varenicline infusion also enhanced recognition memory, and this enhancement was blocked by intra-mPFC co-infusion of a selective α7, but not α4ß2, nAChR antagonist. Consistent with this, intra-mPFC infusion of a selective α7 nAChR agonist augmented object recognition memory. Furthermore, intra-mPFC co-infusion of U-73122, a phospholipase C (PLC) inhibitor, or 2-aminoethoxydiphenylborane (2-APB), an inositol trisphosphate (IP3) receptor inhibitor, suppressed the varenicline-induced memory enhancement, suggesting that α7 nAChRs may also act as Gq-coupled metabotropic receptors. Additionally, whole-cell recordings from mPFC layer V pyramidal neurons in vitro revealed that varenicline significantly increased the summation of evoked excitatory postsynaptic potentials, and this effect was suppressed by U-73122 or 2-APB. These findings suggest that varenicline might acutely enhance recognition memory via mPFC α7 nAChR stimulation, followed by mPFC neuronal excitation, which is mediated by the activation of PLC and IP3 receptor signaling. Our study provides evidence supporting the potential repositioning of varenicline as a treatment for cognitive impairment.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , Mice , Male , Animals , Varenicline/pharmacology , Receptors, Nicotinic/metabolism , Mice, Inbred C57BL , Prefrontal Cortex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL