Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(10): 12612-12623, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427784

ABSTRACT

Silicon microparticles (SiMPs) have gained significant attention as a lithium-ion battery anode material due to their 10 times higher theoretical capacity compared to conventional graphite anodes as well as their much lower production cost than silicon nanoparticles (SiNPs). However, SiMPs have suffered from poorer cycle life relative to SiNPs because their larger size makes them more susceptible to volume changes during charging and discharging. Creating a wrapping structure in which SiMPs are enveloped by carbon layers has proven to be an effective strategy to significantly improve the cycling performance of SiMPs. However, the synthesis processes are complex and time-/energy-consuming and therefore not scalable. In this study, a wrapping structure is created by using a simple, rapid, and scalable "modified reprecipitation method". Graphene oxide (GO) and SiMP dispersion in tetrahydrofuran is injected into n-hexane, in which GO and SiMP by themselves cannot disperse. GO and SiMP therefore aggregate and precipitate immediately after injection to form a wrapping structure. The resulting SiMP/GO film is laser scribed to reduce GO to a laser-scribed graphene (LSG). Simultaneously, SiOx and SiC protection layers form on the SiMPs through the laser process, which alleviates severe volume change. Owing to these desirable characteristics, the modified reprecipitation method successfully doubles the cycle life of SiMP/graphene composites compared to the simple physically mixing method (50.2% vs. 24.0% retention at the 100th cycle). The modified reprecipitation method opens a new synthetic strategy for SiMP/carbon composites.

2.
Small ; : e2305921, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342674

ABSTRACT

Silicon has gained significant attention as a lithium-ion battery anode material due to its high theoretical capacity compared to conventional graphite. Unfortunately, silicon anodes suffer from poor cycling performance caused by their extreme volume change during lithiation and de-lithiation. Compositing silicon particles with 2D carbon materials, such as graphene, can help mitigate this problem. However, an unaddressed challenge remains: a simple, inexpensive synthesis of Si/graphene composites. Here, a one-step laser-scribing method is proposed as a straightforward, rapid (≈3 min), scalable, and less-energy-consuming (≈5 W for a few minutes under air) process to prepare Si/laser-scribed graphene (LSG) composites. In this research, two types of Si particles, Si nanoparticles (SiNPs) and Si microparticles (SiMPs), are used. The rate performance is improved after laser scribing: SiNP/LSG retains 827.6 mAh g-1 at 2.0 A gSi+C -1 , while SiNP/GO (before laser scribing) retains only 463.8 mAh g-1 . This can be attributed to the fast ion transport within the well-exfoliated 3D graphene network formed by laser scribing. The cyclability is also improved: SiNP/LSG retains 88.3% capacity after 100 cycles at 2.0 A gSi+C -1 , while SiNP/GO retains only 57.0%. The same trend is found for SiMPs: the SiMP/LSG shows better rate and cycling performance than SiMP/GO composites.

3.
Adv Mater ; 36(3): e2306145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37903216

ABSTRACT

Rechargeability in zinc (Zn) batteries is limited by anode irreversibility. The practical lean electrolytes exacerbate the issue, compromising the cost benefits of zinc batteries for large-scale energy storage. In this study, a zinc-coordinated interphase is developed to avoid chemical corrosion and stabilize zinc anodes. The interphase promotes Zn2+ ions to selectively bind with histidine and carboxylate ligands, creating a coordination environment with high affinity and fast diffusion due to thermodynamic stability and kinetic lability. Experiments and simulations indicate that interphase regulates dendrite-free electrodeposition and reduces side reactions. Implementing such labile coordination interphase results in increased cycling at 20 mA cm-2 and high reversibility of dendrite-free zinc plating/stripping for over 200 hours. A Zn||LiMn2 O4 cell with 74.7 mWh g-1 energy density and 99.7% Coulombic efficiency after 500 cycles realized enhanced reversibility using the labile coordination interphase. A lean-electrolyte full cell using only 10 µL mAh-1 electrolyte is also demonstrated with an elongated lifespan of 100 cycles, five times longer than bare Zn anodes. The cell offers a higher energy density than most existing aqueous batteries. This study presents a proof-of-concept design for low-electrolyte, high-energy-density batteries by modulating coordination interphases on Zn anodes.

4.
Macromol Rapid Commun ; 45(1): e2300237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37232260

ABSTRACT

Conducting polymers like polyaniline (PANI) are promising pseudocapacitive electrode materials, yet experience instability in cycling performance. Since polymers often degrade into oligomers, short chain length anilines have been developed to improve the cycling stability of PANI-based supercapacitors. However, the capacitance degradation mechanisms of aniline oligomer-based materials have not been systematically investigated and are little understood. Herein, two composite electrodes based on aniline trimers (AT) and carbon nanotubes (CNTs) are studied as model systems and evaluated at both pre-cycling and post-cycling states through physicochemical and electrochemical characterizations. The favorable effect of covalent bonding between AT and CNTs is confirmed to enhance cycling stability by preventing the detachment of aniline trimer and preserving the electrode microstructure throughout the charge/discharge cycling process. In addition, higher porosity has a positive effect on electron/ion transfer and the adaptation to volumetric changes, resulting in higher conductivity and extended cycle life. This work provides insights into the mechanism of enhanced cycling stability of aniline oligomers, indicating design features for aniline oligomer electrode materials to improve their electrochemical performance.


Subject(s)
Nanotubes, Carbon , Polymers , Polymers/chemistry , Nanotubes, Carbon/chemistry , Aniline Compounds/chemistry
5.
Mater Horiz ; 11(3): 688-699, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37990914

ABSTRACT

The development of potent pseudocapacitive charge storage materials has emerged as an effective solution for closing the gap between high-energy density batteries and high-power density and long-lasting electrical double-layer capacitors. Sulfonyl compounds are ideal candidates owing to their rapid and reversible redox reactions. However, structural instability and low electrical conductivity hinder their practical application as electrode materials. This work addresses these challenges using a fast and clean laser process to interconnect sulfonated carbon nanodots into functionalized porous carbon frameworks. In this bottom-up approach, the resulting laser-converted three-dimensional (3D) turbostratic carbon foams serve as high-surface-area, conductive scaffolds for redox-active sulfonyl groups. This design enables efficient faradaic processes using pendant sulfonyl groups, leading to a high specific capacitance of 157.6 F g-1 due to the fast reversible redox reactions of sulfonyl moieties. Even at 20 A g-1, the capacitance remained at 78.4% due to the uniform distribution of redox-active sites on the graphitic domains. Additionally, the 3D-tsSC300 electrode showed remarkable cycling stability of >15 000 cycles. The dominant capacitive processes and kinetics were analysed using extensive electrochemical characterizations. Furthermore, we successfully used 3D-tsSC300 in flexible solid-state supercapacitors, achieving a high specific capacitance of up to 17.4 mF cm-2 and retaining 91.6% of the initial capacitance after 20 000 cycles of charge and discharge coupled with 90° bending tests. Additionally, an as-assembled flexible all-solid-state symmetric supercapacitor exhibits a high energy density of 12.6 mW h cm-3 at a high power density of 766.2 W cm-3, both normalized by the volumes of the full device, which is comparable or better than state-of-the-art commercial pseudocapacitors and hybrid capacitors. The integrated supercapacitor provides a wide potential window of 2.0 V using a serial circuit, showing great promise for metal-free energy storage devices.

6.
Small ; 18(29): e2202277, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35726082

ABSTRACT

Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D-printing and pyrolysis, offers enormous potential for high-mass-loading electrodes. In this work, sodium-ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record-high areal capacity of 21.3 mAh cm-2 at a loading of 98 mg cm-2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm-2 at 92 mg cm-2 ). Furthermore, binder-free, pure-carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X-ray diffraction measurements. These results will advance the development of high-performance and low-cost anodes for sodium-ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D-printed carbon architectures in both applications and fundamental studies.

7.
Sci Rep ; 12(1): 3915, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35273235

ABSTRACT

Inexpensive, high-performing, and environmentally friendly energy storage devices are required for smart grids that efficiently utilize renewable energy. Energy storage devices consisting of organic active materials are promising because organic materials, especially quinones, are ubiquitous and usually do not require harsh conditions for synthesis, releasing less CO2 during mass production. Although fundamental research-scale aqueous quinone-based organic supercapacitors have shown excellent energy storage performance, no practical research has been conducted. In this study, we aimed to develop a practical-scale aqueous-quinone-based organic supercapacitor. By connecting 12 cells of size 10 cm × 10 cm × 0.5 cm each in series, we fabricated a high-voltage (> 6 V) aqueous organic supercapacitor that can charge a smartphone at a 1 C rate. This is the first step in commercializing aqueous organic supercapacitors that could solve environmental problems, such as high CO2 emissions, air pollution by toxic metals, and limited electricity generation by renewable resources.

8.
Adv Sci (Weinh) ; 9(12): e2200187, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35266645

ABSTRACT

While organic batteries have attracted great attention due to their high theoretical capacities, high-voltage organic active materials (> 4 V vs Li/Li+ ) remain unexplored. Here, density functional theory calculations are combined with cyclic voltammetry measurements to investigate the electrochemistry of croconic acid (CA) for use as a lithium-ion battery cathode material in both dimethyl sulfoxide and γ-butyrolactone (GBL) electrolytes. DFT calculations demonstrate that CA dilitium salt (CA-Li2 ) has two enolate groups that undergo redox reactions above 4.0 V and a material-level theoretical energy density of 1949 Wh kg-1 for storing four lithium ions in GBL-exceeding the value of both conventional inorganic and known organic cathode materials. Cyclic-voltammetry measurements reveal a highly reversible redox reaction by the enolate group at ≈4 V in both electrolytes. Battery-performance tests of CA as lithium-ion battery cathode in GBL show two discharge voltage plateaus at 3.9 and 3.1 V, and a discharge capacity of 102.2 mAh g-1 with no capacity loss after five cycles. With the higher discharge voltages compared to the known, state-of-the-art organic small molecules, CA promises to be a prime cathode-material candidate for future high-energy-density lithium-ion organic batteries.

9.
Philos Trans A Math Phys Eng Sci ; 379(2209): 20200348, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510926

ABSTRACT

There is an urgent need to develop renewable sources of energy and use existing resources in an efficient manner. In this study, in order to improve the utilization of unused biomass and develop green processes and sustainable technologies for energy production and storage, unused Douglas fir sawdust (SD) was transformed into catalysts for the oxygen reduction reaction. Fe and N were doped into SD during hydrothermal carbonization, and the N- and Fe-doped wood-derived carbon (Fe/N/SD) was carbonized in a nitrogen atmosphere. After the catalyst had been calcined at 800°C, its showed the highest current density (-5.86 mAcm-2 at 0.5 V versus reversible hydrogen electrode or RHE) and Eonset value (0.913 V versus RHE). Furthermore, its current density was higher than that of Pt/C (20 wt% Pt) (-5.66 mA cm-2 @0.5 V versus RHE). Finally, after 50 000 s, the current density of sample Fe/N/SD (2 : 10 : 10) remained at 79.3% of the initial value. Thus, the synthesized catalysts, which can be produced readily at a low cost, are suitable for use in various types of energy generation and storage devices, such as fuel cells and air batteries. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

10.
ChemSusChem ; 13(21): 5762-5768, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32940949

ABSTRACT

Hard carbon (HC) is the most promising candidate for sodium-ion battery anode materials. Several material properties such as intensity ratio of the Raman spectrum, lateral size of HC crystallite (La ), and interlayer distance (d002 ) have been discussed as factors affecting anode performance. However, these factors do not reflect the bulk property of the Na+ intercalation reaction directly, since Raman analysis has high surface sensitivity and La and d002 provide only one-dimensional crystalline information. Herein, it was proposed that the crystallite interlayer area (Ai ) defined using La , d002 , and stacking height (Lc ) governs Na+ intercalation behavior of various HCs. It was revealed that various wood-derived HCs exhibited the similar total capacity of approximately 250 mAh g-1 , whereas the Na+ intercalation capacity (Ci ) was proportional to Ai with the correlation coefficient of R2 =0.94. The evaluation factor of Ai was also adaptable to previous reports and strongly correlated with their Ci , indicating that Ai is more widely adaptable than the conventional evaluation methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...