Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Am J Epidemiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38775275

ABSTRACT

The Human Epidemiology and Response to SARS-CoV-2 (HEROS) is a prospective multi-city 6-month incidence study which was conducted from May 2020-February 2021. The objectives were to identify risk factors for SARS-CoV-2 infection and household transmission among children and people with asthma and allergic diseases, and to use the host nasal transcriptome sampled longitudinally to understand infection risk and sequelae at the molecular level. To overcome challenges of clinical study implementation due to the coronavirus pandemic, this surveillance study used direct-to-participant methods to remotely enroll and prospectively follow eligible children who are participants in other NIH-funded pediatric research studies and their household members. Households participated in weekly surveys and biweekly nasal sampling regardless of symptoms. The aim of this report is to widely share the methods and study instruments and to describe the rationale, design, execution, logistics and characteristics of a large, observational, household-based, remote cohort study of SARS-CoV-2 infection and transmission in households with children. The study enrolled a total of 5,598 individuals, including 1,913 principal participants (children), 1,913 primary caregivers, 729 secondary caregivers and 1,043 other household children. This study was successfully implemented without necessitating any in-person research visits and provides an approach for rapid execution of clinical research.

2.
Article in English | MEDLINE | ID: mdl-38718950

ABSTRACT

BACKGROUND: Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVE: To determine if nasal allergen challenge (NAC) responses to cockroach allergen would improve following one year of SCIT. METHODS: Urban children with asthma, that were cockroach-sensitized and reactive on NAC, participated in a yearlong randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean total nasal symptoms scores (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test (SPT) wheal size, serum allergen-specific antibody production and T-cell responses to cockroach allergen were assessed. RESULTS: Changes in mean NAC TNSS did not differ between SCIT-assigned (n=28) versus placebo-assigned (n=29) participants (p=0.63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum specific IgE (sIgE) decreased to a similar extent in both groups, while decreased cockroach SPT wheal size was greater among SCIT participants (p=0.04). A 200-fold increase in cockroach sIgG4 was observed among subjects receiving SCIT (p<0.001) but was unchanged in the placebo group. T-cell interleukin-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (p=0.002), while no effect was observed for interleukin-10 or interferon-gamma. CONCLUSION: A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum sIgG4 production and down-modulation of allergen stimulated T-cell responses.

3.
Article in English | MEDLINE | ID: mdl-38574825

ABSTRACT

BACKGROUND: Allergic sensitization and low lung function in early childhood are risk factors for subsequent wheezing and asthma. However, it is unclear how allergic sensitization affects lung function over time. OBJECTIVE: We sought to test whether allergy influences lung function and whether these factors synergistically increase the risk of continued wheezing in childhood. METHODS: We analyzed longitudinal measurements of lung function (spirometry and impulse oscillometry) and allergic sensitization (aeroallergen skin tests and serum allergen-specific IgE) throughout early childhood in the Urban Environmental and Childhood Asthma study, which included high-risk urban children living in disadvantaged neighborhoods. Intraclass correlation coefficients were calculated to assess lung function stability. Cluster analysis identified low, medium, and high allergy trajectories, which were compared with lung function and wheezing episodes in linear regression models. A variable selection model assessed predictors at age 5 years for continued wheezing through age 12 years. RESULTS: Lung function adjusted for growth was stable (intraclass correlation coefficient, 0.5-0.7) from age 5 to 12 years and unrelated to allergy trajectory. Lung function and allergic sensitization were associated with wheezing episodes in an additive fashion. In children with asthma, measuring lung function at age 5 years added little to the medical history for predicting future wheezing episodes through age 12 years. CONCLUSIONS: In high-risk urban children, age-related trajectories of allergic sensitization were not associated with lung function development; however, both indicators were related to continued wheezing. These results underscore the importance of understanding early-life factors that negatively affect lung development and suggest that treating allergic sensitization may not alter lung function development in early to mid-childhood.

4.
Article in English | MEDLINE | ID: mdl-38485057

ABSTRACT

BACKGROUND: MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE: We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS: Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS: Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS: Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.

5.
Article in English | MEDLINE | ID: mdl-38423369

ABSTRACT

BACKGROUND: Five distinct respiratory phenotypes based on latent classes of longitudinal patterns of wheezing, allergic sensitization. and pulmonary function measured in urban children from ages from 0 to 7 years have previously been described. OBJECTIVE: Our aim was to determine whether distinct respiratory phenotypes are associated with early-life upper respiratory microbiota development and environmental microbial exposures. METHODS: Microbiota profiling was performed using 16S ribosomal RNA-based sequencing of nasal samples collected at age 12 months (n = 120) or age 36 months (n = 142) and paired house dust samples collected at 3 months (12-month, n = 73; 36-month, n = 90) from all 4 centers in the Urban Environment and Childhood Asthma (URECA) cohort. RESULTS: In these high-risk urban children, nasal microbiota increased in diversity between ages 12 and 36 months (ß = 2.04; P = .006). Age-related changes in microbiota evenness differed significantly by respiratory phenotypes (interaction P = .0007), increasing most in the transient wheeze group. At age 12 months, respiratory illness (R2 = 0.055; P = .0001) and dominant bacterial genus (R2 = 0.59; P = .0001) explained variance in nasal microbiota composition, and enrichment of Moraxella and Haemophilus members was associated with both transient and high-wheeze respiratory phenotypes. By age 36 months, nasal microbiota was significantly associated with respiratory phenotypes (R2 = 0.019; P = .0376), and Moraxella-dominated microbiota was associated specifically with atopy-associated phenotypes. Analysis of paired house dust and nasal samples indicated that 12 month olds with low wheeze and atopy incidence exhibited the largest number of shared bacterial taxa with their environment. CONCLUSION: Nasal microbiota development over the course of early childhood and composition at age 3 years are associated with longitudinal respiratory phenotypes. These data provide evidence supporting an early-life window of airway microbiota development that is influenced by environmental microbial exposures in infancy and associates with wheeze- and atopy-associated respiratory phenotypes through age 7 years.

6.
J Allergy Clin Immunol ; 153(3): 809-820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37944567

ABSTRACT

BACKGROUND: Most genetic studies of asthma and allergy have focused on common variation in individuals primarily of European ancestry. Studying the role of rare variation in quantitative phenotypes and in asthma phenotypes in populations of diverse ancestries can provide additional, important insights into the development of these traits. OBJECTIVE: We sought to examine the contribution of rare variants to different asthma- or allergy-associated quantitative traits in children with diverse ancestries and explore their role in asthma phenotypes. METHODS: We examined whole-genome sequencing data from children participants in longitudinal studies of asthma (n = 1035; parent-identified as 67% Black and 25% Hispanic) to identify rare variants (minor allele frequency < 0.01). We assigned variants to genes and tested for associations using an omnibus variant-set test between each of 24,902 genes and 8 asthma-associated quantitative traits. On combining our results with external data on predicted gene expression in humans and mouse knockout studies, we identified 3 candidate genes. A burden of rare variants in each gene and in a combined 3-gene score was tested for its associations with clinical phenotypes of asthma. Finally, published single-cell gene expression data in lower airway mucosal cells after allergen challenge were used to assess transcriptional responses to allergen. RESULTS: Rare variants in USF1 were significantly associated with blood neutrophil count (P = 2.18 × 10-7); rare variants in TNFRSF21 with total IgE (P = 6.47 × 10-6) and PIK3R6 with eosinophil count (P = 4.10 × 10-5) reached suggestive significance. These 3 findings were supported by independent data from human and mouse studies. A burden of rare variants in TNFRSF21 and in a 3-gene score was associated with allergy-related phenotypes in cohorts of children with mild and severe asthma. Furthermore, TNFRSF21 was significantly upregulated in bronchial basal epithelial cells from adults with allergic asthma but not in adults with allergies (but not asthma) after allergen challenge. CONCLUSIONS: We report novel associations between rare variants in genes and allergic and inflammatory phenotypes in children with diverse ancestries, highlighting TNFRSF21 as contributing to the development of allergic asthma.


Subject(s)
Asthma , Hypersensitivity , Adult , Child , Humans , Animals , Mice , Asthma/genetics , Hypersensitivity/genetics , Genetic Association Studies , Phenotype , Allergens , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Receptors, Tumor Necrosis Factor
7.
J Pediatr Gastroenterol Nutr ; 77(6): 703-712, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37771007

ABSTRACT

Infants born with esophageal atresia and tracheoesophageal fistula, a complex congenital malformation occurring in 1/2500-4000 live births, may suffer threats to their cardiac, respiratory, and digestive health in addition to anomalies that may exist in the genitourinary and musculoskeletal systems. Optimal care for these patients throughout their lives is best achieved through a coordinated, multidisciplinary approach that our health care system is not always well-equipped to provide. This review, though not exhaustive, highlights the components of care that pertain to initial surgical reconstruction and subsequent diagnosis and management of the complications that are most frequently encountered. Authors from among the many specialties involved in the care of these patients summarize the current best practice with attention to the most recent advances. Assessment and improvement of quality of life and transition to adult specialists as children grow to adulthood is also reviewed.


Subject(s)
Esophageal Atresia , Infant, Newborn, Diseases , Tracheoesophageal Fistula , Infant , Infant, Newborn , Child , Humans , Tracheoesophageal Fistula/diagnosis , Tracheoesophageal Fistula/genetics , Tracheoesophageal Fistula/surgery , Esophageal Atresia/complications , Esophageal Atresia/diagnosis , Esophageal Atresia/genetics , Quality of Life , Retrospective Studies
8.
J Med Virol ; 95(8): e29058, 2023 08.
Article in English | MEDLINE | ID: mdl-37638498

ABSTRACT

Rhinoviruses (RVs) can cause severe wheezing illnesses in young children and patients with asthma. Vaccine development has been hampered by the multitude of RV types with little information about cross-neutralization. We previously showed that neutralizing antibody (nAb) responses to RV-C are detected twofold to threefold more often than those to RV-A throughout childhood. Based on those findings, we hypothesized that RV-C infections are more likely to induce either cross-neutralizing or longer-lasting antibody responses compared with RV-A infections. We pooled RV diagnostic data from multiple studies of children with respiratory illnesses and compared the expected versus observed frequencies of sequential infections with RV-A or RV-C types using log-linear regression models. We tested longitudinally collected plasma samples from children to compare the duration of RV-A versus RV-C nAb responses. Our models identified limited reciprocal cross-neutralizing relationships for RV-A (A12-A75, A12-A78, A20-A78, and A75-A78) and only one for RV-C (C2-C40). Serologic analysis using reference mouse sera and banked human plasma samples confirmed that C40 infections induced nAb responses with modest heterotypic activity against RV-C2. Mixed-effects regression modeling of longitudinal human plasma samples collected from ages 2 to 18 years demonstrated that RV-A and RV-C illnesses induced nAb responses of similar duration. These results indicate that both RV-A and RV-C nAb responses have only modest cross-reactivity that is limited to genetically similar types. Contrary to our initial hypothesis, RV-C species may include even fewer cross-neutralizing types than RV-A, whereas the duration of nAb responses during childhood is similar between the two species. The modest heterotypic responses suggest that RV vaccines must have a broad representation of prevalent types.


Subject(s)
Asthma , Rhinovirus , Child , Humans , Animals , Mice , Child, Preschool , Antibody Formation , Antibodies, Neutralizing , Cross Reactions
9.
PLoS One ; 18(3): e0283349, 2023.
Article in English | MEDLINE | ID: mdl-36996064

ABSTRACT

BACKGROUND: Acute chest syndrome (ACS) is an acute complication in SCD but its effects on lung function are not well understood. Inflammation is a key component of SCD pathophysiology but with an unclear association with lung function. We hypothesized that children with ACS had worse lung function than children without ACS and aimed to investigate the association of lung function deficits with inflammatory cytokines. METHODS: Patients enrolled in a previous 2-year randomized clinical trial who had consented to future data use, were enrolled for the present exploratory study. Patients were categorized into ACS and non-ACS groups. Demographic and clinical information were collected. Serum samples were used for quantification of serum cytokines and leukotriene B4 levels and pulmonary function tests (PFTs) were assessed. RESULTS: Children with ACS had lower total lung capacity (TLC) at baseline and at 2 years, with a significant decline in forced expiratory volume in 1 sec (FEV1) and mid-maximal expiratory flow rate (FEF25-75%) in the 2 year period (p = 0.015 and p = 0.039 respectively). For children with ACS, serum cytokines IL-5, and IL-13 were higher at baseline and at 2 years compared to children with no ACS. IP-10 and IL-6 were negatively correlated with PFT markers. In multivariable regression using generalized estimating equation approach for factors predicting lung function, age was significantly associated FEV1 (p = 0.047) and ratio of FEV1 and forced vital capacity (FVC)- FEV1/FVC ratio (p = 0.006); males had lower FEV1/FVC (p = 0.035) and higher TLC (p = 0.031). Asthma status was associated with FEV1 (p = 0.017) and FVC (p = 0.022); history of ACS was significantly associated with TLC (p = 0.027). CONCLUSION: Pulmonary function abnormalities were more common and inflammatory markers were elevated in patients with ACS, compared with those without ACS. These findings suggest airway inflammation is present in children with SCD and ACS, which could be contributing to impaired pulmonary function.


Subject(s)
Acute Chest Syndrome , Anemia, Sickle Cell , Lung Diseases , Male , Child , Humans , Acute Chest Syndrome/complications , Anemia, Sickle Cell/complications , Lung , Vital Capacity , Lung Diseases/complications , Forced Expiratory Volume , Inflammation/complications , Cytokines
10.
J Allergy Clin Immunol ; 151(6): 1609-1621, 2023 06.
Article in English | MEDLINE | ID: mdl-36754293

ABSTRACT

BACKGROUND: DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES: To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS: This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS: Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS: This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.


Subject(s)
Asthma , Hypersensitivity , Child , Humans , Epigenome , Epigenesis, Genetic , Genome-Wide Association Study , Hypersensitivity/genetics , Asthma/genetics , DNA Methylation , Genomics , DNA , CpG Islands
11.
PLoS Genet ; 19(1): e1010594, 2023 01.
Article in English | MEDLINE | ID: mdl-36638096

ABSTRACT

Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; ßz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; ß = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.


Subject(s)
Genome-Wide Association Study , Lung , Adult , Adolescent , Humans , Child , Lung/metabolism , DNA Methylation/genetics , Multiomics , Forced Expiratory Volume/genetics , Genotype , Smoking
12.
Lancet Planet Health ; 7(1): e33-e44, 2023 01.
Article in English | MEDLINE | ID: mdl-36608946

ABSTRACT

BACKGROUND: Asthma prevalence and severity have markedly increased with urbanisation, and children in low-income urban centres have among the greatest asthma morbidity. Outdoor air pollution has been associated with adverse respiratory effects in children with asthma. However, the mechanisms by which air pollution exposure exacerbates asthma, and how these mechanisms compare with exacerbations induced by respiratory viruses, are poorly understood. We aimed to investigate the associations between regional air pollutant concentrations, respiratory illnesses, lung function, and upper airway transcriptional signatures in children with asthma, with particular focus on asthma exacerbations occurring in the absence of respiratory virus. METHODS: We performed a retrospective analysis of data from the MUPPITS1 cohort and validated our findings in the ICATA cohort. The MUPPITS1 cohort recruited 208 children aged 6-17 years living in urban areas across nine US cities with exacerbation-prone asthma between Oct 7, 2015, and Oct 18, 2016, and monitored them during reported respiratory illnesses. The last MUPPITS1 study visit occurred on Jan 6, 2017. The ICATA cohort recruited 419 participants aged 6-20 years with persistent allergic asthma living in urban sites across eight US cities between Oct 23, 2006, and March 25, 2008, and the last study visit occurred on Dec 30, 2009. We included participants from the MUPPITS1 cohort who reported a respiratory illness at some point during the follow-up and participants from the ICATA cohort who had nasal samples collected during respiratory illness or at a scheduled visit. We used air quality index values and air pollutant concentrations for PM2·5, PM10, O3, NO2, SO2, CO, and Pb from the US Environmental Protection Agency spanning the years of both cohorts, and matched values and concentrations to each illness for each participant. We investigated the associations between regional air pollutant concentrations and respiratory illnesses and asthma exacerbations, pulmonary function, and upper airway transcriptional signatures by use of a combination of generalised additive models, case crossover analyses, and generalised linear mixed-effects models. FINDINGS: Of the 208 participants from the MUPPITS1 cohort and 419 participants from the ICATA cohort, 168 participants in the MUPPITS1 cohort (98 male participants and 70 female participants) and 189 participants in the ICATA cohort (115 male participants and 74 female participants) were included in our analysis. We identified that increased air quality index values, driven predominantly by increased PM2·5 and O3 concentrations, were significantly associated with asthma exacerbations and decreases in pulmonary function that occurred in the absence of a provoking viral infection. Moreover, individual pollutants were significantly associated with altered gene expression in coordinated inflammatory pathways, including PM2·5 with increased epithelial induction of tissue kallikreins, mucus hypersecretion, and barrier functions and O3 with increased type-2 inflammation. INTERPRETATION: Our findings suggest that air pollution is an important independent risk factor for asthma exacerbations in children living in urban areas and is potentially linked to exacerbations through specific inflammatory pathways in the airway. Further investigation of these potential mechanistic pathways could inform asthma prevention and management approaches. FUNDING: National Institutes of Health, National Institute of Allergy and Infectious Diseases.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Humans , Male , Child , Female , Adolescent , United States/epidemiology , Air Pollutants/analysis , Retrospective Studies , Air Pollution/adverse effects , Air Pollution/analysis , Asthma/epidemiology , Particulate Matter/analysis
13.
Prev Med ; 170: 107414, 2023 05.
Article in English | MEDLINE | ID: mdl-36592675

ABSTRACT

Cannabis use is increasing among adults with children in the home particularly in states with cannabis legalization for medical (MCL) and/or recreational use (RCL), relative to states where cannabis use remains illegal at the state level. Exposure to secondhand smoke is a key risk factor for asthma among children. The objective of the current study was to investigate the relationship between MCL and RCL and the state-level prevalence of asthma among children in the United States (US). This ecological study used data from the 2011to 2019 National Survey on Children's Health, a representative sample of the population of minor children in the US. Changes in the annual prevalence of pediatric asthma by RCL/MCL over time were estimated using difference-in-difference (DID) analysis. Overall, a statistically significant decrease of 1.1% in the prevalence of pediatric asthma was observed from 2011- 2012 to 2018-2019. Adjusting for sociodemographic characteristics, overall reductions in asthma over time were generally greater in states in which cannabis use is fully illegal or with recent MCL adoption, but the rate of decline did not differ statistically by RCL/MCL status. Relative to 2011-2012 and to states where cannabis is fully illegal, the prevalence of asthma increased in states with RCL among youth 12-17 years old (2018-2019 DID = 2.56, p = .028) and among youth in some NH minoritized race/ethnicity groups (2016-2017 DID = 3.88, p = .013 and 2018-2019 DID = 4.45, p = .004). More research is needed to estimate the potential consequences of increased adult use of cannabis in the community for children's respiratory health.


Subject(s)
Asthma , Cannabis , Tobacco Smoke Pollution , Adult , Adolescent , Humans , United States/epidemiology , Child , Cannabis/adverse effects , Asthma/epidemiology , Risk Factors , Legislation, Drug
14.
Genome Med ; 14(1): 112, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175932

ABSTRACT

BACKGROUND: Asthma is the most common chronic disease in children, occurring at higher frequencies and with more severe disease in children with African ancestry. METHODS: We tested for association with haplotypes at the most replicated and significant childhood-onset asthma locus at 17q12-q21 and asthma in European American and African American children. Following this, we used whole-genome sequencing data from 1060 African American and 100 European American individuals to identify novel variants on a high-risk African American-specific haplotype. We characterized these variants in silico using gene expression and ATAC-seq data from airway epithelial cells, functional annotations from ENCODE, and promoter capture (pc)Hi-C maps in airway epithelial cells. Candidate causal variants were then assessed for correlation with asthma-associated phenotypes in African American children and adults. RESULTS: Our studies revealed nine novel African-specific common variants, enriched on a high-risk asthma haplotype, which regulated the expression of GSDMA in airway epithelial cells and were associated with features of severe asthma. Using ENCODE annotations, ATAC-seq, and pcHi-C, we narrowed the associations to two candidate causal variants that are associated with features of T2 low severe asthma. CONCLUSIONS: Previously unknown genetic variation at the 17q12-21 childhood-onset asthma locus contributes to asthma severity in individuals with African ancestries. We suggest that many other population-specific variants that have not been discovered in GWAS contribute to the genetic risk for asthma and other common diseases.


Subject(s)
Asthma , Black or African American , Black or African American/genetics , Alleles , Asthma/genetics , Asthma/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Pore Forming Cytotoxic Proteins
15.
Lancet ; 400(10351): 502-511, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35964610

ABSTRACT

BACKGROUND: Black and Hispanic children living in urban environments in the USA have an excess burden of morbidity and mortality from asthma. Therapies directed at the eosinophilic phenotype reduce asthma exacerbations in adults, but few data are available in children and diverse populations. Furthermore, the molecular mechanisms that underlie exacerbations either being prevented by, or persisting despite, immune-based therapies are not well understood. We aimed to determine whether mepolizumab, added to guidelines-based care, reduced the number of asthma exacerbations during a 52-week period compared with guidelines-based care alone. METHODS: This is a randomised, double-blind, placebo-controlled, parallel-group trial done at nine urban medical centres in the USA. Children and adolescents aged 6-17 years, who lived in socioeconomically disadvantaged neighbourhoods and had exacerbation-prone asthma (defined as ≥two exacerbations in the previous year) and blood eosinophils of at least 150 cells per µL were randomly assigned 1:1 to mepolizumab (6-11 years: 40 mg; 12-17 years: 100 mg) or placebo injections once every 4 weeks, plus guideline-based care, for 52 weeks. Randomisation was done using a validated automated system. Participants, investigators, and the research staff who collected outcome measures remained masked to group assignments. The primary outcome was the number of asthma exacerbations that were treated with systemic corticosteroids during 52 weeks in the intention-to-treat population. The mechanisms of treatment response were assessed by study investigators using nasal transcriptomic modular analysis. Safety was assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03292588. FINDINGS: Between Nov 1, 2017, and Mar 12, 2020, we recruited 585 children and adolescents. We screened 390 individuals, of whom 335 met the inclusion criteria and were enrolled. 290 met the randomisation criteria, were randomly assigned to mepolizumab (n=146) or placebo (n=144), and were included in the intention-to-treat analysis. 248 completed the study. The mean number of asthma exacerbations within the 52-week study period was 0·96 (95% CI 0·78-1·17) with mepolizumab and 1·30 (1·08-1·57) with placebo (rate ratio 0·73; 0·56-0·96; p=0·027). Treatment-emergent adverse events occurred in 42 (29%) of 146 participants in the mepolizumab group versus 16 (11%) of 144 participants in the placebo group. No deaths were attributed to mepolizumab. INTERPRETATION: Phenotype-directed therapy with mepolizumab in urban children with exacerbation-prone eosinophilic asthma reduced the number of exacerbations. FUNDING: US National Institute of Allergy and Infectious Diseases and GlaxoSmithKline.


Subject(s)
Asthma , Pulmonary Eosinophilia , Antibodies, Monoclonal, Humanized , Asthma/drug therapy , Humans , United States , Urban Population
16.
medRxiv ; 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35860216

ABSTRACT

The Human Epidemiology and Response to SARS-CoV-2 (HEROS) is a prospective multi-city 6-month incidence study which was conducted from May 2020-February 2021. The objectives were to identify risk factors for SARS-CoV-2 infection and household transmission among children and people with asthma and allergic diseases, and to use the host nasal transcriptome sampled longitudinally to understand infection risk and sequelae at the molecular level. To overcome challenges of clinical study implementation due to the coronavirus pandemic, this surveillance study used direct-to-participant methods to remotely enroll and prospectively follow eligible children who are participants in other NIH-funded pediatric research studies and their household members. Households participated in weekly surveys and biweekly nasal sampling regardless of symptoms. The aim of this report is to widely share the methods and study instruments and to describe the rationale, design, execution, logistics and characteristics of a large, observational, household-based, remote cohort study of SARS-CoV-2 infection and transmission in households with children. The study enrolled a total of 5,598 individuals, including 1,913 principal participants (children), 1,913 primary caregivers, 729 secondary caregivers and 1,043 other household children. This study was successfully implemented without necessitating any in-person research visits and provides an approach for rapid execution of clinical research.

17.
J Allergy Clin Immunol ; 150(2): 302-311, 2022 08.
Article in English | MEDLINE | ID: mdl-35660376

ABSTRACT

BACKGROUND: Whether children and people with asthma and allergic diseases are at increased risk for severe acute respiratory syndrome virus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: Our aims were to determine the incidence of SARS-CoV-2 infection in households with children and to also determine whether self-reported asthma and/or other allergic diseases are associated with infection and household transmission. METHODS: For 6 months, biweekly nasal swabs and weekly surveys were conducted within 1394 households (N = 4142 participants) to identify incident SARS-CoV-2 infections from May 2020 to February 2021, which was the pandemic period largely before a vaccine and before the emergence of SARS-CoV-2 variants. Participant and household infection and household transmission probabilities were calculated by using time-to-event analyses, and factors associated with infection and transmission risk were determined by using regression analyses. RESULTS: In all, 147 households (261 participants) tested positive for SARS-CoV-2. The household SARS-CoV-2 infection probability was 25.8%; the participant infection probability was similar for children (14.0% [95% CI = 8.0%-19.6%]), teenagers (12.1% [95% CI = 8.2%-15.9%]), and adults (14.0% [95% CI = 9.5%-18.4%]). Infections were symptomatic in 24.5% of children, 41.2% of teenagers, and 62.5% of adults. Self-reported doctor-diagnosed asthma was not a risk factor for infection (adjusted hazard ratio [aHR] = 1.04 [95% CI = 0.73-1.46]), nor was upper respiratory allergy or eczema. Self-reported doctor-diagnosed food allergy was associated with lower infection risk (aHR = 0.50 [95% CI = 0.32-0.81]); higher body mass index was associated with increased infection risk (aHR per 10-point increase = 1.09 [95% CI = 1.03-1.15]). The household secondary attack rate was 57.7%. Asthma was not associated with household transmission, but transmission was lower in households with food allergy (adjusted odds ratio = 0.43 [95% CI = 0.19-0.96]; P = .04). CONCLUSION: Asthma does not increase the risk of SARS-CoV-2 infection. Food allergy is associated with lower infection risk, whereas body mass index is associated with increased infection risk. Understanding how these factors modify infection risk may offer new avenues for preventing infection.


Subject(s)
Asthma , COVID-19 , Hypersensitivity , Adolescent , Adult , Asthma/epidemiology , COVID-19/epidemiology , Child , Humans , Hypersensitivity/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2
18.
J Allergy Clin Immunol ; 150(1): 204-213, 2022 07.
Article in English | MEDLINE | ID: mdl-35149044

ABSTRACT

BACKGROUND: Seasonal variation in respiratory illnesses and exacerbations in pediatric populations with asthma is well described, though whether upper airway microbes play season-specific roles in these events is unknown. OBJECTIVE: We hypothesized that nasal microbiota composition is seasonally dynamic and that discrete microbe-host interactions modify risk of asthma exacerbation in a season-specific manner. METHODS: Repeated nasal samples from children with exacerbation-prone asthma collected during periods of respiratory health (baseline; n = 181 samples) or first captured respiratory illness (n = 97) across all seasons, underwent bacterial (16S ribosomal RNA gene) and fungal (internal transcribed spacer region 2) biomarker sequencing. Virus detection was performed by multiplex PCR. Paired nasal transcriptome data were examined for seasonal dynamics and integrative analyses. RESULTS: Upper airway bacterial and fungal microbiota and rhinovirus detection exhibited significant seasonal dynamics. In seasonally adjusted analysis, variation in both baseline and respiratory illness microbiota related to subsequent exacerbation. Specifically, in the fall, when respiratory illness and exacerbation events were most frequent, several Moraxella and Haemophilus members were enriched both in virus-positive respiratory illnesses and those that progressed to exacerbations. The abundance of 2 discrete bacterial networks, characteristically comprising either Streptococcus or Staphylococcus, exhibited opposing interactions with an exacerbation-associated SMAD3 nasal epithelial transcriptional module to significantly increase the odds of subsequent exacerbation (odds ratio = 14.7, 95% confidence interval = 1.50-144, P = .02; odds ratio = 39.17, 95% confidence interval = 2.44-626, P = .008, respectively). CONCLUSIONS: Upper airway microbiomes covary with season and with seasonal trends in respiratory illnesses and asthma exacerbations. Seasonally adjusted analyses reveal specific bacteria-host interactions that significantly increase risk of asthma exacerbation in these children.


Subject(s)
Asthma , Microbiota , Virus Diseases , Asthma/microbiology , Bacteria/genetics , Child , Humans , Rhinovirus , Seasons , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...