Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21049, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473917

ABSTRACT

Mitochondrial dysfunction induced by acute cardiac ischemia-reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis.


Subject(s)
Bone Density Conservation Agents , Craniocerebral Trauma , Mice , Animals , Cardiac Electrophysiology , Ischemia
2.
Biomed Res Int ; 2022: 6889278, 2022.
Article in English | MEDLINE | ID: mdl-36203484

ABSTRACT

Background: Mitochondria fuse to form elongated networks which are more tolerable to stress and injury. Ischemic pre- and postconditioning (IPC and IPost, respectively) are established cardioprotective strategies in the preclinical setting. Whether IPC and IPost modulates mitochondrial morphology is unknown. We hypothesize that the protective effects of IPC and IPost may be conferred via preservation of mitochondrial network. Methods: IPC and IPost were applied to the H9c2 rat myoblast cells, isolated adult primary murine cardiomyocytes, and the Langendorff-isolated perfused rat hearts. The effects of IPC and IPost on cardiac cell death following ischemia-reperfusion injury (IRI), mitochondrial morphology, and gene expression of mitochondrial-shaping proteins were investigated. Results: IPC and IPost successfully reduced cardiac cell death and myocardial infarct size. IPC and IPost maintained the mitochondrial network in both H9c2 and isolated adult primary murine cardiomyocytes. 2D-length measurement of the 3 mitochondrial subpopulations showed that IPC and IPost significantly increased the length of interfibrillar mitochondria (IFM). Gene expression of the pro-fusion protein, Mfn1, was significantly increased by IPC, while the pro-fission protein, Drp1, was significantly reduced by IPost in the H9c2 cells. In the primary cardiomyocytes, gene expression of both Mfn1 and Mfn2 were significantly upregulated by IPC and IPost, while Drp1 was significantly downregulated by IPost. In the Langendorff-isolated perfused heart, gene expression of Drp1 was significantly downregulated by both IPC and IPost. Conclusion: IPC and IPost-mediated upregulation of pro-fusion proteins (Mfn1 and Mfn2) and downregulation of pro-fission (Drp1) promote maintenance of the interconnected mitochondrial network, ultimately conferring cardioprotection against IRI.


Subject(s)
Ischemic Postconditioning , Ischemic Preconditioning, Myocardial , Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Mice , Mitochondria/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Rats
3.
ACS Synth Biol ; 10(3): 640-645, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33625849

ABSTRACT

The combination of single-cell RNA sequencing with CRISPR inhibition/activation provides a high-throughput approach to simultaneously study the effects of hundreds if not thousands of gene perturbations in a single experiment. One recent development in CRISPR-based single-cell techniques introduces a feature barcoding technology that allows for the simultaneous capture of mRNA and guide RNA (gRNA) from the same cell. This is achieved by introducing a capture sequence, whose complement can be incorporated into each gRNA and that can be used to amplify these features prior to sequencing. However, because the technology is in its infancy, there is little information available on how such experimental parameters can be optimized. To overcome this, we varied the capture sequence, capture sequence position, and gRNA backbone to identify an optimal gRNA scaffold for CRISPR activation gene perturbation studies. We provide a report on our screening approach along with our observations and recommendations for future use.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Single-Cell Analysis/methods , Human Embryonic Stem Cells , Humans , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Cell Syst ; 11(5): 509-522.e10, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33038298

ABSTRACT

The need to derive and culture diverse cell or tissue types in vitro has prompted investigations on how changes in culture conditions affect cell states. However, the identification of the optimal conditions (e.g., signaling molecules and growth factors) required to maintain cell types or convert between cell types remains a time-consuming task. Here, we developed EpiMogrify, an approach that leverages data from ∼100 human cell/tissue types available from ENCODE and Roadmap Epigenomics consortia to predict signaling molecules and factors that can either maintain cell identity or enhance directed differentiation (or cell conversion). EpiMogrify integrates protein-protein interaction network information with a model of the cell's epigenetic landscape based on H3K4me3 histone modifications. Using EpiMogrify-predicted factors for maintenance conditions, we were able to better potentiate the maintenance of astrocytes and cardiomyocytes in vitro. We report a significant increase in the efficiency of astrocyte and cardiomyocyte differentiation using EpiMogrify-predicted factors for conversion conditions.


Subject(s)
Forecasting/methods , Histones/genetics , Signal Transduction/immunology , Astrocytes , Cell Differentiation/immunology , Cell Differentiation/physiology , Chromatin/metabolism , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenomics/methods , Histone Code/genetics , Histones/metabolism , Humans , Myocytes, Cardiac , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational/genetics
5.
Int J Mol Sci ; 20(16)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443187

ABSTRACT

Background: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition of mitochondrial fission, induced by acute ischemia and reperfusion, reduced MI size. Whether targeting mitochondrial fission at the onset of reperfusion is also cardioprotective in a clinically-relevant large animal AMI model remains to be determined. Methods: Adult pigs (30-40 kg) were subjected to closed-chest 90-min left anterior descending artery ischemia followed by 72 h of reperfusion and were randomized to receive an intracoronary bolus of either mdivi-1 (1.2 mg/kg, a small molecule inhibitor of the mitochondrial fission protein, Drp1) or vehicle control, 10-min prior to reperfusion. The left ventricular (LV) size and function were both assessed by transthoracic echocardiography prior to AMI and after 72 h of reperfusion. MI size and the area-at-risk (AAR) were determined using dual staining with Tetrazolium and Evans blue. Heart samples were collected for histological determination of fibrosis and for electron microscopic analysis of mitochondrial morphology. Results: A total of 14 pigs underwent the treatment protocols (eight control and six mdivi-1). Administration of mdivi-1 immediately prior to the onset of reperfusion did not reduce MI size (MI size as % of AAR: Control 49.2 ± 8.6 vs. mdivi-1 50.5 ± 11.4; p = 0.815) or preserve LV systolic function (LV ejection fraction %: Control 67.5 ± 0.4 vs. mdivi-1 59.6 ± 0.6; p = 0.420), when compared to vehicle control. Similarly, there were no differences in mitochondrial morphology or myocardial fibrosis between mdivi-1 and vehicle control groups. Conclusion: Our pilot study has shown that treatment with mdivi-1 (1.2 mg/kg) at the onset of reperfusion did not reduce MI size or preserve LV function in the clinically-relevant closed-chest pig AMI model. A larger study, testing different doses of mdivi-1 or using a more specific Drp1 inhibitor are required to confirm these findings.


Subject(s)
Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Quinazolinones/therapeutic use , Animals , Disease Models, Animal , Echocardiography , Female , Mitochondrial Dynamics/drug effects , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Pilot Projects , Swine , Ventricular Function, Left/drug effects
6.
Stem Cell Reports ; 12(3): 597-610, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30799273

ABSTRACT

The relationship between diabetes and endothelial dysfunction remains unclear, particularly the association with pathological activation of calpain, an intracellular cysteine protease. Here, we used human induced pluripotent stem cells-derived endothelial cells (iPSC-ECs) to investigate the effects of diabetes on vascular health. Our results indicate that iPSC-ECs exposed to hyperglycemia had impaired autophagy, increased mitochondria fragmentation, and was associated with increased calpain activity. In addition, hyperglycemic iPSC-ECs had increased susceptibility to cell death when subjected to a secondary insult-simulated ischemia-reperfusion injury (sIRI). Importantly, calpain inhibition restored autophagy and reduced mitochondrial fragmentation, concurrent with maintenance of ATP production, normalized reactive oxygen species levels and reduced susceptibility to sIRI. Using a human iPSC model of diabetic endotheliopathy, we demonstrated that restoration of autophagy and prevention of mitochondrial fragmentation via calpain inhibition improves vascular integrity. Our human iPSC-EC model thus represents a valuable platform to explore biological mechanisms and new treatments for diabetes-induced endothelial dysfunction.


Subject(s)
Autophagy/drug effects , Calpain/antagonists & inhibitors , Diabetes Complications/drug therapy , Glycoproteins/pharmacology , Induced Pluripotent Stem Cells/drug effects , Mitochondria/drug effects , Vascular Diseases/drug therapy , Cells, Cultured , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Induced Pluripotent Stem Cells/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Vascular Diseases/metabolism
7.
Cond Med ; 1(5): 239-246, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30338314

ABSTRACT

Acute myocardial infarction (AMI) and the heart failure (HF) that often follows are among the leading causes of death and disability worldwide. As such novel therapies are needed to reduce myocardial infarct (MI) size, and preserve left ventricular (LV) systolic function in order to reduce the propensity for HF following AMI. Mitochondria are dynamic organelles that can undergo morphological changes by two opposing processes, mitochondrial fusion and fission. Changes in mitochondrial morphology and turnover are a vital part of maintaining mitochondrial health, DNA stability, energy production, calcium homeostasis, cellular division, and differentiation, and disturbances in the balance of fusion and fission can predispose to mitochondrial dysfunction and cell death. Changes in mitochondrial morphology are governed by mitochondrial fusion proteins (Mfn1, Mfn2 and OPA1) and mitochondrial fission proteins (Drp1, hFis1, and Mff). Recent experimental data suggest that mitochondria undergo fission during acute ischemia/reperfusion injury (IRI), generating fragmented dysfunctional mitochondrial and predisposing to cell death. We and others have shown that genetic and pharmacological inhibition of the mitochondrial fission protein Drp1 can protect cardiomyocytes from acute IRI and reduce MI size. Novel components of the mitochondrial fission machinery, mitochondrial dynamics proteins of 49 kDa (MiD49) and mitochondrial dynamics proteins of 51 kDa (MiD51), have been recently described, which have been shown to mediating mitochondrial fission by targeting Drp1 to the mitochondrial surface. In this review article, we provide an overview of MiD49 and MiD51, and highlight their potential as novel therapeutic targets for treating cardiovascular diseases such as AMI, anthracycline cardiomyopathy, and pulmonary arterial hypertension.

8.
Expert Opin Ther Targets ; 22(3): 247-261, 2018 03.
Article in English | MEDLINE | ID: mdl-29417868

ABSTRACT

INTRODUCTION: New treatments are required to improve clinical outcomes in patients with acute myocardial infarction (AMI), for reduction of myocardial infarct (MI) size and preventing heart failure. Following AMI, acute ischemia/reperfusion injury (IRI) ensues, resulting in cardiomyocyte death and impaired cardiac function. Emerging studies have implicated a fundamental role for non-coding RNAs (microRNAs [miRNA], and more recently long non-coding RNAs [lncRNA]) in the setting of acute myocardial IRI. Areas covered: In this article, we discuss the roles of miRNAs and lncRNAs as potential biomarkers and therapeutic targets for the detection and treatment of AMI, review their roles as mediators and effectors of cardioprotection, particularly in the settings of interventions such as ischemic pre- and post-conditioning (IPC & IPost) as well as remote ischemic conditioning (RIC), and highlight future strategies for targeting ncRNAs to reduce MI size and prevent heart failure following AMI. Expert opinion: Investigating the roles of miRNAs and lncRNAs in the setting of AMI has provided new insights into the pathophysiology underlying acute myocardial IRI, and has identified novel biomarkers and therapeutic targets for detecting and treating AMI. Pharmacological and genetic manipulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.


Subject(s)
Molecular Targeted Therapy , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/prevention & control , Animals , Heart Failure/genetics , Heart Failure/prevention & control , Humans , MicroRNAs/genetics , Myocardial Infarction/complications , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/pathology , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...