Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 19(8): e1010909, 2023 08.
Article in English | MEDLINE | ID: mdl-37651474

ABSTRACT

Trichoderma spp. are ubiquitous rhizosphere fungi capable of producing several classes of secondary metabolites that can modify the dynamics of the plant-associated microbiome. However, the bacterial-fungal mechanisms that mediate these interactions have not been fully characterized. Here, a random barcode transposon-site sequencing (RB-TnSeq) approach was employed to identify bacterial genes important for fitness in the presence of Trichoderma atroviride exudates. We selected three rhizosphere bacteria with RB-TnSeq mutant libraries that can promote plant growth: the nitrogen fixers Klebsiella michiganensis M5aI and Herbaspirillum seropedicae SmR1, and Pseudomonas simiae WCS417. As a non-rhizosphere species, Pseudomonas putida KT2440 was also included. From the RB-TnSeq data, nitrogen-fixing bacteria competed mainly for iron and required the siderophore transport system TonB/ExbB for optimal fitness in the presence of T. atroviride exudates. In contrast, P. simiae and P. putida were highly dependent on mechanisms associated with membrane lipid modification that are required for resistance to cationic antimicrobial peptides (CAMPs). A mutant in the Hog1-MAP kinase (Δtmk3) gene of T. atroviride showed altered expression patterns of many nonribosomal peptide synthetase (NRPS) biosynthetic gene clusters with potential antibiotic activity. In contrast to exudates from wild-type T. atroviride, bacterial mutants containing lesions in genes associated with resistance to antibiotics did not show fitness defects when RB-TnSeq libraries were exposed to exudates from the Δtmk3 mutant. Unexpectedly, exudates from wild-type T. atroviride and the Δtmk3 mutant rescued purine auxotrophic mutants of H. seropedicae, K. michiganensis and P. simiae. Metabolomic analysis on exudates from wild-type T. atroviride and the Δtmk3 mutant showed that both strains excrete purines and complex metabolites; functional Tmk3 is required to produce some of these metabolites. This study highlights the complex interplay between Trichoderma-metabolites and soil bacteria, revealing both beneficial and antagonistic effects, and underscoring the intricate and multifaceted nature of this relationship.


Subject(s)
Bacteria , Hypocreales , Genes, Bacterial , Anti-Bacterial Agents
2.
mSystems ; 8(4): e0128022, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37377419

ABSTRACT

Stable isotope probing (SIP) facilitates culture-independent identification of active microbial populations within complex ecosystems through isotopic enrichment of nucleic acids. Many DNA-SIP studies rely on 16S rRNA gene sequences to identify active taxa, but connecting these sequences to specific bacterial genomes is often challenging. Here, we describe a standardized laboratory and analysis framework to quantify isotopic enrichment on a per-genome basis using shotgun metagenomics instead of 16S rRNA gene sequencing. To develop this framework, we explored various sample processing and analysis approaches using a designed microbiome where the identity of labeled genomes and their level of isotopic enrichment were experimentally controlled. With this ground truth dataset, we empirically assessed the accuracy of different analytical models for identifying active taxa and examined how sequencing depth impacts the detection of isotopically labeled genomes. We also demonstrate that using synthetic DNA internal standards to measure absolute genome abundances in SIP density fractions improves estimates of isotopic enrichment. In addition, our study illustrates the utility of internal standards to reveal anomalies in sample handling that could negatively impact SIP metagenomic analyses if left undetected. Finally, we present SIPmg, an R package to facilitate the estimation of absolute abundances and perform statistical analyses for identifying labeled genomes within SIP metagenomic data. This experimentally validated analysis framework strengthens the foundation of DNA-SIP metagenomics as a tool for accurately measuring the in situ activity of environmental microbial populations and assessing their genomic potential. IMPORTANCE Answering the questions, "who is eating what?" and "who is active?" within complex microbial communities is paramount for our ability to model, predict, and modulate microbiomes for improved human and planetary health. These questions can be pursued using stable isotope probing to track the incorporation of labeled compounds into cellular DNA during microbial growth. However, with traditional stable isotope methods, it is challenging to establish links between an active microorganism's taxonomic identity and genome composition while providing quantitative estimates of the microorganism's isotope incorporation rate. Here, we report an experimental and analytical workflow that lays the foundation for improved detection of metabolically active microorganisms and better quantitative estimates of genome-resolved isotope incorporation, which can be used to further refine ecosystem-scale models for carbon and nutrient fluxes within microbiomes.


Subject(s)
Metagenomics , Microbiota , Humans , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , DNA/genetics , Isotopes , Microbiota/genetics
3.
Nat Commun ; 9(1): 2568, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29967329

ABSTRACT

Peptides and analogs such as peptide nucleic acids (PNA) are promising tools and therapeutics, but the cell membrane remains a barrier to intracellular targets. Conjugation to classical cell penetrating peptides (CPPs) such as pTat48-60 (tat) and pAntp43-68 (penetratin) facilitates delivery; however, efficiencies are low. Lack of explicit design principles hinders rational improvement. Here, we use synthetic molecular evolution (SME) to identify gain-of-function CPPs with dramatically improved ability to deliver cargoes to cells at low concentration. A CPP library containing 8192 tat/penetratin hybrid peptides coupled to an 18-residue PNA is screened using the HeLa pTRE-LucIVS2 splice correction reporter system. The daughter CPPs identified are one to two orders of magnitude more efficient than the parent sequences at delivery of PNA, and also deliver a dye cargo and an anionic peptide cargo. The significant increase in performance following a single iteration of SME demonstrates the power of this approach to peptide sequence optimization.


Subject(s)
Cell-Penetrating Peptides/genetics , Directed Molecular Evolution/methods , Drug Delivery Systems , Gain of Function Mutation , Peptide Nucleic Acids/genetics , Cell Membrane Permeability , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/pharmacokinetics , Feasibility Studies , HeLa Cells , Humans , Peptide Library , Peptide Nucleic Acids/administration & dosage , Pharmaceutical Vehicles/chemical synthesis , Pharmaceutical Vehicles/pharmacokinetics , RNA Splicing/genetics
4.
J Am Chem Soc ; 137(51): 16144-52, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26632653

ABSTRACT

To better understand the sequence-structure-function relationships that control the activity and selectivity of membrane-permeabilizing peptides, we screened a peptide library, based on the archetypal pore-former melittin, for loss-of-function variants. This was accomplished by assaying library members for failure to cause leakage of entrapped contents from synthetic lipid vesicles at a peptide-to-lipid ratio of 1:20, 10-fold higher than the concentration at which melittin efficiently permeabilizes the same vesicles. Surprisingly, about one-third of the library members are inactive under these conditions. In the negative peptides, two changes of hydrophobic residues to glycine were especially abundant. We show that loss-of-function activity can be completely recapitulated by a single-residue change of the leucine at position 16 to glycine. Unlike the potently cytolytic melittin, the loss-of-function peptides, including the single-site variant, are essentially inactive against phosphatidylcholine vesicles and multiple types of eukaryotic cells. Loss of function is shown to result from a shift in the binding-folding equilibrium away from the active, bound, α-helical state toward the inactive, unbound, random-coil state. Accordingly, the addition of anionic lipids to synthetic lipid vesicles restored binding, α-helical secondary structure, and potent activity of the "negative" peptides. While nontoxic to mammalian cells, the single-site variant has potent bactericidal activity, consistent with the anionic nature of bacterial membranes. The results show that conformational fine-tuning of helical pore-forming peptides is a powerful way to modulate their activity and selectivity.


Subject(s)
Peptides/chemistry , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Drug Screening Assays, Antitumor , Erythrocytes/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Peptides/pharmacology , Protein Conformation
5.
Trends Biochem Sci ; 40(12): 749-764, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26545486

ABSTRACT

The permeability barrier imposed by cellular membranes limits the access of exogenous compounds to the interior of cells. Researchers and patients alike would benefit from efficient methods for intracellular delivery of a wide range of membrane-impermeant molecules, including biochemically active small molecules, imaging agents, peptides, peptide nucleic acids, proteins, RNA, DNA, and nanoparticles. There has been a sustained effort to exploit cell penetrating peptides (CPPs) for the delivery of such useful cargoes in vitro and in vivo because of their biocompatibility, ease of synthesis, and controllable physical chemistry. Here, we discuss the many mechanisms by which CPPs can function, and describe a taxonomy of mechanisms that could be help organize future efforts in the field.


Subject(s)
Cell Membrane/metabolism , Cell-Penetrating Peptides/classification , Cell-Penetrating Peptides/metabolism , Animals , Cell Membrane/chemistry , Cell-Penetrating Peptides/chemistry , Humans
6.
J Biol Chem ; 288(41): 29974-86, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23983125

ABSTRACT

Direct cellular entry of potentially useful polar compounds into cells is prevented by the hydrophobic barrier of the membrane. Toward circumventing this barrier, we used high throughput screening to identify a family of peptides that carry membrane-impermeant cargos across synthetic membranes. Here we characterize the plasma membrane translocation of these peptides with polar cargos under a variety of conditions. The spontaneous membrane-translocating peptides (SMTPs) delivered the zwitterionic, membrane-impermeant dye tetramethylrhodamine (TAMRA) into cells even when the conditions were not permissive for endocytosis. They also delivered the larger, anionic membrane-impermeant dye Alexa Fluor 546 but did not deliver a quantum dot nanoparticle. Under all conditions, the SMTP-cargo filled the cytoplasm with a diffuse, non-punctate fluorescence that was partially excluded from the nucleus. D-amino acid peptides behaved identically in vitro, ruling out proteolysis as an important factor in the diffuse cellular distribution. Thus, cytosolic delivery of SMTP-cargo conjugates is dominated by direct membrane translocation. This is in sharp contrast to Arg9-TAMRA, a representative highly cationic, cell-penetrating peptide, which entered cells only when endocytosis was permitted. Arg9-TAMRA triggered large scale endocytosis and did not appreciably escape the endosomal compartments in the 1-h timescales we studied. When injected into mice, SMTP-TAMRA conjugates were found in many tissues even after 2 h. Unconjugated TAMRA was rapidly cleared and did not become systemically distributed. SMTPs are a platform that could improve delivery of many polar compounds to cells, in the laboratory or in the clinic, including those that would otherwise be rejected as drugs because they are membrane-impermeant.


Subject(s)
Cell Membrane/metabolism , Cytosol/metabolism , Peptides/metabolism , Rhodamines/metabolism , Amino Acid Sequence , Animals , Biological Transport , CHO Cells , Cell Survival/drug effects , Cricetinae , Cricetulus , Drug Delivery Systems/methods , Endocytosis , Female , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Peptides/administration & dosage , Peptides/chemistry , Quinolinium Compounds/administration & dosage , Quinolinium Compounds/chemistry , Quinolinium Compounds/metabolism , Reproducibility of Results , Rhodamines/administration & dosage , Rhodamines/chemistry
7.
Ann Neurol ; 71(4): 470-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22522439

ABSTRACT

OBJECTIVE: Mutations in the type IV collagen alpha 1 gene (COL4A1) cause dominantly inherited cerebrovascular disease. We seek to determine the extent to which COL4A1 mutations contribute to sporadic, nonfamilial, intracerebral hemorrhages (ICHs). METHODS: We sequenced COL4A1 in 96 patients with sporadic ICH. The presence of putative mutations was tested in 145 ICH-free controls. The effects of rare coding variants on COL4A1 biosynthesis were compared to previously validated mutations that cause porencephaly, small vessel disease, and hereditary angiopathy, nephropathy, aneurysms, and cramps (HANAC) syndrome. RESULTS: We identified 2 rare nonsynonymous variants in ICH patients that were not detected in controls, 2 rare nonsynonymous variants in controls that were not detected in patients, and 2 common nonsynonymous variants that were detected in patients and controls. No variant found in controls affected COL4A1 biosynthesis. Both variants (COL4A1(P352L) and COL4A1(R538G)) found only in patients changed conserved amino acids and impaired COL4A1 secretion much like mutations that cause familial cerebrovascular disease. INTERPRETATION: This is the first assessment of the broader role for COL4A1 mutations in the etiology of ICH beyond a contribution to rare and severe familial cases and the first functional evaluation of the biosynthetic consequences of an allelic series of COL4A1 mutations that cause cerebrovascular disease. We identified 2 putative mutations in 96 patients with sporadic ICH and showed that these and other previously validated mutations inhibit secretion of COL4A1. Our data support the hypothesis that increased intracellular accumulation of COL4A1, decreased extracellular COL4A1, or both, contribute to sporadic cerebrovascular disease and ICH.


Subject(s)
Cerebral Hemorrhage/genetics , Collagen Type IV/genetics , Genetic Predisposition to Disease/genetics , Mutation , Aged , Amino Acid Sequence , Blotting, Western , Cerebrovascular Disorders/genetics , DNA Mutational Analysis , Female , Humans , Male , Molecular Sequence Data
8.
Am J Hum Genet ; 90(1): 91-101, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22209247

ABSTRACT

Collagen, type IV, alpha 1 (COL4A1) and alpha 2 (COL4A2) form heterotrimers and are abundant components of basement membranes, including those of the cerebral vasculature. COL4A1 mutations are an increasingly recognized cause of multisystem disorders, including highly penetrant cerebrovascular disease and intracerebral hemorrhage (ICH). Because COL4A1 and COL4A2 are structurally and functionally associated, we hypothesized that variants in COL4A2 would also cause ICH. We sequence COL4A2 in 96 patients with ICH and identify three rare, nonsynonymous coding variants in four patients that are not present in a cohort of 144 ICH-free individuals. All three variants change evolutionarily conserved amino acids. Using a cellular assay, we show that these putative mutations cause intracellular accumulation of COL4A1 and COL4A2 at the expense of their secretion, which supports their pathogenecity. Furthermore, we show that Col4a2 mutant mice also have completely penetrant ICH and that mutations in mouse and human lead to retention of COL4A1 and COL4A2 within the endoplasmic reticulum (ER). Importantly, two of the three putative mutations found in patients trigger ER stress and activate the unfolded protein response. The identification of putative COL4A2 mutations that might contribute to ICH in human patients provides insight into the pathogenic mechanisms of this disease. Our data suggest that COL4A2 mutations impair COL4A1 and COL4A2 secretion and can also result in cytotoxicity. Finally, our findings suggest that, collectively, mutations in COL4A1 and COL4A2 contribute to sporadic cases of ICH.


Subject(s)
Collagen Type IV/genetics , Collagen Type IV/metabolism , Intracranial Hemorrhages/genetics , Mutation , Stroke/genetics , Adult , Aged , Amino Acid Sequence , Animals , Base Sequence , Endoplasmic Reticulum Stress/genetics , Female , Humans , Male , Mice , Middle Aged , Molecular Sequence Data , Unfolded Protein Response
SELECTION OF CITATIONS
SEARCH DETAIL