Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(27): e2406032121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38913904

ABSTRACT

The Toarcian Oceanic Anoxic Event (T-OAE; ~183 Mya) was a globally significant carbon-cycle perturbation linked to widespread deposition of organic-rich sediments, massive volcanic CO2 release, marine faunal extinction, sea-level rise, a crisis in carbonate production related to ocean acidification, and elevated seawater temperatures. Despite recognition of the T-OAE as a potential analog for future ocean deoxygenation, current knowledge on the severity of global ocean anoxia is limited largely to studies of the trace element and isotopic composition of black shales, which are commonly affected by local processes. Here, we present the first carbonate-based uranium isotope (δ238U) record of the T-OAE from open marine platform limestones of the southeastern Tethys Ocean as a proxy for global seawater redox conditions. A significant negative δ238U excursion (~0.4‰) is recorded just prior to the onset of the negative carbon isotope excursion comprised within the T-OAE, followed by a long-lived recovery of δ238U values, thus confirming that the T-OAE represents a global expansion of marine anoxia. Using a Bayesian inverse isotopic mass balance model, we estimate that anoxic waters covered ~6 to 8% of the global seafloor during the peak of the T-OAE, which represents 28 to 38 times the extent of anoxia in the modern ocean. These data, combined with δ238U-based estimates of seafloor anoxic area for other CO2-driven Phanerozoic OAEs, suggest a common response of ocean anoxia to carbon release, thus improving prediction of future anthropogenically induced ocean deoxygenation.

2.
Proc Natl Acad Sci U S A ; 120(47): e2305574120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37956282

ABSTRACT

We apply a recently developed measurement technique for methane (CH4) isotopologues* (isotopic variants of CH4-13CH4, 12CH3D, 13CH3D, and 12CH2D2) to identify contributions to the atmospheric burden from fossil fuel and microbial sources. The aim of this study is to constrain factors that ultimately control the concentration of this potent greenhouse gas on global, regional, and local levels. While predictions of atmospheric methane isotopologues have been modeled, we present direct measurements that point to a different atmospheric methane composition and to a microbial flux with less clumping (greater deficits relative to stochastic) in both 13CH3D and 12CH2D2 than had been previously assigned. These differences make atmospheric isotopologue data sufficiently sensitive to variations in microbial to fossil fuel fluxes to distinguish between emissions scenarios such as those generated by different versions of EDGAR (the Emissions Database for Global Atmospheric Research), even when existing constraints on the atmospheric CH4 concentration profile as well as traditional isotopes are kept constant.

4.
Nature ; 615(7953): 640-645, 2023 03.
Article in English | MEDLINE | ID: mdl-36890233

ABSTRACT

The Devonian-Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean-atmosphere oxidation states1,2, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering3,4, glacioeustasy5,6, eutrophication and anoxic expansion in epicontinental seas3,4, and mass extinction events2,7,8. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). Our dataset allows for the detailed documentation of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events. Other Phanerozoic extinctions have also been related to the expansion of shallow-water euxinia, indicating that hydrogen sulfide toxicity was a key driver of Phanerozoic biodiversity.


Subject(s)
Extinction, Biological , Hydrogen Sulfide , Oceans and Seas , Oxygen , Spatio-Temporal Analysis , Biodiversity , Hydrogen Sulfide/analysis , Hydrogen Sulfide/poisoning , Atmosphere/chemistry , Water Cycle , Eutrophication , Datasets as Topic , Oxygen/analysis , Oxygen/metabolism , Oxidation-Reduction , Plants/metabolism , North America , History, Ancient , Geologic Sediments/chemistry , Animals
5.
Nat Commun ; 13(1): 7306, 2022 11 27.
Article in English | MEDLINE | ID: mdl-36435820

ABSTRACT

The Ediacaran biota were soft-bodied organisms, many with enigmatic phylogenetic placement and ecology, living in marine environments between 574 and 539 million years ago. Some studies hypothesize a metazoan affinity and aerobic metabolism for these taxa, whereas others propose a fundamentally separate taxonomic grouping and a reliance on chemoautotrophy. To distinguish between these hypotheses and test the redox-sensitivity of Ediacaran organisms, here we present a high-resolution local and global redox dataset from carbonates that contain in situ Ediacaran fossils from Siberia. Cerium anomalies are consistently >1, indicating that local environments, where a diverse Ediacaran assemblage is preserved in situ as nodules and carbonaceous compressions, were pervasively anoxic. Additionally, δ238U values match other terminal Ediacaran sections, indicating widespread marine euxinia. These data suggest that some Ediacaran biotas were tolerant of at least intermittent anoxia, and thus had the capacity for a facultatively anaerobic lifestyle. Alternatively, these soft-bodied Ediacara organisms may have colonized the seafloor during brief oxygenation events not recorded by redox proxy data. Broad temporal correlations between carbon, sulfur, and uranium isotopes further highlight the dynamic redox landscape of Ediacaran-Cambrian evolutionary events.


Subject(s)
Biological Evolution , Fossils , Animals , Phylogeny , Biota , Hypoxia , Oxygen
6.
Geol Mag ; n/a2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31631899

ABSTRACT

The late Ediacaran Dengying Formation (ca. 551.1-538.8 Ma) in South China is one of two successions where Ediacara-type macrofossils are preserved in carbonate facies along with skeletal fossils and bilaterian animal traces. Given the remarkable thickness of carbonate-bearing strata deposited in less than 12.3 million years, the Dengying Formation holds the potential for a relatively continuous chemostratigraphic profile for the terminal Ediacaran stage. In this study, a detailed sedimentological and chemostratigraphic (δ13Ccarb, δ18Ocarb, δ13Corg, δ34Spyrite, and 87Sr/86Sr) investigation was conducted on the Dengying Formation at the Gaojiashan section, Ningqiang County of the southern Shaanxi Province, South China. Sedimentological results reveal an overall shallow marine depositional environment. Carbonate breccia, void-filling botryoidal precipitates, and aragonite crystal fans are common in the Algal Dolomite Member of the Dengying Formation, suggesting that peritidal facies were repeatedly karstified. The timing of karstification was likely early, probably soon after the deposition of the dolomite sediments. The presence of authigenic aragonite cements suggests high alkalinity in the terminal Ediacaran ocean. Geochemical analysis of micro-drilled samples shows that distinct compositions are registered in different carbonate phases, which should be considered when constructing chemostratigraphic profiles representative of true temporal variations in seawater chemistry. Integrated chemostratigraphic data suggest enhanced burial of organic carbon and pyrite, and the occurrence of extensive marine anoxia (at least in the Gaojiashan Member). Rapid basinal subsidence and carbonate accumulation during a time of elevated seawater alkalinity and increased rates of pyrite burial may have facilitated the evolutionary innovation of early biomineralizing metazoans.

7.
Sci Adv ; 4(6): eaan8983, 2018 06.
Article in English | MEDLINE | ID: mdl-29938217

ABSTRACT

The terminal Ediacaran Period witnessed the decline of the Ediacara biota (which may have included many stem-group animals). To test whether oceanic anoxia might have played a role in this evolutionary event, we measured U isotope compositions (δ238U) in sedimentary carbonates from the Dengying Formation of South China to obtain new constraints on the extent of global redox change during the terminal Ediacaran. We found the most negative carbonate δ238U values yet reported (-0.95 per mil), which were reproduced in two widely spaced coeval sections spanning the terminal Ediacaran Period (551 to 541 million years ago). Mass balance modeling indicates an episode of extensive oceanic anoxia, during which anoxia covered >21% of the seafloor and most U entering the oceans was removed into sediments below anoxic waters. The results suggest that an expansion of oceanic anoxia and temporal-spatial redox heterogeneity, independent of other environmental and ecological factors, may have contributed to the decline of the Ediacara biota and may have also stimulated animal motility.

8.
Nat Commun ; 5: 5754, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25517864

ABSTRACT

Soft-tissue fossils capture exquisite biological detail and provide our clearest views onto the rise of animals across the Ediacaran-Cambrian transition. The processes contributing to fossilization of soft tissues, however, have long been a subject of debate. The Ediacaran Gaojiashan biota displays soft-tissue preservational styles ranging from pervasive pyritization to carbonaceous compression, and thus provides an excellent opportunity to dissect the relationships between these taphonomic pathways. Here geochemical analyses of the Gaojiashan fossil Conotubus hemiannulatus show that pyrite precipitation was fuelled by the degradation of labile tissues through bacterial sulfate reduction (BSR). Pyritization initiated with nucleation on recalcitrant tube walls, proceeded centripetally, decelerated with exhaustion of labile tissues and possibly continued beneath the BSR zone. We propose that pyritization and kerogenization are regulated principally by placement and duration of the decaying organism in different microbial zones of the sediment column, which hinge on post-burial sedimentation rate and/or microbial zone thickness.


Subject(s)
Carbonates/chemistry , Fossils , Iron/chemistry , Preservation, Biological , Sulfides/chemistry , Animals , Biological Evolution , China , Geologic Sediments/analysis , Oxidation-Reduction , Pressure , Sulfur-Reducing Bacteria/physiology
9.
Science ; 346(6210): 742-4, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25378623

ABSTRACT

The minor extent of sulfur isotope fractionation preserved in many Neoarchean sedimentary successions suggests that sulfate-reducing microorganisms played an insignificant role in ancient marine environments, despite evidence that these organisms evolved much earlier. We present bulk, microdrilled, and ion probe sulfur isotope data from carbonate-associated pyrite in the ~2.5-billion-year-old Batatal Formation of Brazil, revealing large mass-dependent fractionations (approaching 50 per mil) associated with microbial sulfate reduction, as well as consistently negative Δ(33)S values (~ -2 per mil) indicative of atmospheric photochemical reactions. Persistent (33)S depletion through ~60 meters of shallow marine carbonate implies long-term stability of seawater sulfate abundance and isotope composition. In contrast, a negative Δ(33)S excursion in lower Batatal strata indicates a response time of ~40,000 to 150,000 years, suggesting Neoarchean sulfate concentrations between ~1 and 10 µM.


Subject(s)
Bacteria/metabolism , Seawater/chemistry , Seawater/microbiology , Sulfates/metabolism , Carbonates/chemistry , Chemical Fractionation , Iron/chemistry , Oxidation-Reduction , Sulfates/chemistry , Sulfates/isolation & purification , Sulfides/chemistry , Sulfur Isotopes/chemistry , Sulfur Isotopes/isolation & purification , Sulfur Isotopes/metabolism
10.
Proc Natl Acad Sci U S A ; 108(43): 17635-8, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-21997216

ABSTRACT

Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13‰ for (33)S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed (36)S depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant (36)S anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples.


Subject(s)
Hot Temperature , Magnetics , Models, Chemical , Sulfates/chemistry , Sulfur Isotopes/chemistry , Amino Acids/chemistry , Electron Spin Resonance Spectroscopy , Oxidation-Reduction
11.
Science ; 323(5917): 1045-8, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19229033

ABSTRACT

The nitrogen cycle provides essential nutrients to the biosphere, but its antiquity in modern form is unclear. In a drill core though homogeneous organic-rich shale in the 2.5-billion-year-old Mount McRae Shale, Australia, nitrogen isotope values vary from +1.0 to +7.5 per mil (per thousand) and back to +2.5 per thousand over approximately 30 meters. These changes evidently record a transient departure from a largely anaerobic to an aerobic nitrogen cycle complete with nitrification and denitrification. Complementary molybdenum abundance and sulfur isotopic values suggest that nitrification occurred in response to a small increase in surface-ocean oxygenation. These data imply that nitrifying and denitrifying microbes had already evolved by the late Archean and were present before oxygen first began to accumulate in the atmosphere.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Geologic Sediments/chemistry , Nitrogen Isotopes/analysis , Nitrogen/chemistry , Nitrogen/metabolism , Oxygen/chemistry , Aerobiosis , Anaerobiosis , Australia , Biological Evolution , Nitrates/chemistry , Nitrates/metabolism , Nitrites/chemistry , Nitrites/metabolism , Nitrogen Fixation , Oceans and Seas , Oxidation-Reduction , Oxygen/metabolism , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/metabolism , Time
12.
Proc Natl Acad Sci U S A ; 105(9): 3197-202, 2008 Mar 04.
Article in English | MEDLINE | ID: mdl-18299566

ABSTRACT

Recent geochemical data from Oman, Newfoundland, and the western United States suggest that long-term oxidation of Ediacaran oceans resulted in progressive depletion of a large dissolved organic carbon (DOC) reservoir and potentially triggered the radiation of acanthomorphic acritarchs, algae, macroscopic Ediacara organisms, and, subsequently, motile bilaterian animals. However, the hypothesized coupling between ocean oxidation and evolution is contingent on the reliability of continuous geochemical and paleontological data in individual sections and of intercontinental correlations. Here we report high-resolution geochemical data from the fossil-rich Doushantuo Formation (635-551 Ma) in South China that confirm trends from other broadly equivalent sections and highlight key features that have not been observed in most sections or have received little attention. First, samples from the lower Doushantuo Formation are characterized by remarkably stable delta(13)C(org) (carbon isotope composition of organic carbon) values but variable delta(34)S(CAS) (sulfur isotope composition of carbonate-associated sulfate) values, which are consistent with a large isotopically buffered DOC reservoir and relatively low sulfate concentrations. Second, there are three profound negative delta(13)C(carb) (carbon isotope composition of carbonate) excursions in the Ediacaran Period. The negative delta(13)C(carb) excursions in the middle and upper Doushantuo Formation record pulsed oxidation of the deep oceanic DOC reservoir. The oxidation events appear to be coupled with eukaryote diversity in the Doushantuo basin. Comparison with other early Ediacaran basins suggests spatial heterogeneity of eukaryote distribution and redox conditions. We hypothesize that the distribution of early Ediacaran eukaryotes likely tracked redox conditions and that only after approximately 551 Ma (when Ediacaran oceans were pervasively oxidized) did evolution of oxygen-requiring taxa reach global distribution.


Subject(s)
Biological Evolution , Oxygen , Paleontology/methods , Seawater/chemistry , Animals , Carbon , Carbon Isotopes , Fossils , Geologic Sediments , Oceans and Seas
14.
Nature ; 449(7163): 706-9, 2007 Oct 11.
Article in English | MEDLINE | ID: mdl-17928857

ABSTRACT

The evolution of the Earth's atmosphere is marked by a transition from an early atmosphere with very low oxygen content to one with an oxygen content within a few per cent of the present atmospheric level. Placing time constraints on this transition is of interest because it identifies the time when oxidative weathering became efficient, when ocean chemistry was transformed by delivery of oxygen and sulphate, and when a large part of Earth's ecology changed from anaerobic to aerobic. The observation of non-mass-dependent sulphur isotope ratios in sedimentary rocks more than approximately 2.45 billion years (2.45 Gyr) old and the disappearance of this signal in younger sediments is taken as one of the strongest lines of evidence for the transition from an anoxic to an oxic atmosphere around 2.45 Gyr ago. Detailed examination of the sulphur isotope record before 2.45 Gyr ago also reveals early and late periods of large amplitude non-mass-dependent signals bracketing an intervening period when the signal was attenuated. Until recently, this record has been too sparse to allow interpretation, but collection of new data has prompted some workers to argue that the Mesoarchaean interval (3.2-2.8 Gyr ago) lacks a non-mass-dependent signal, and records the effects of earlier and possibly permanent oxygenation of the Earth's atmosphere. Here we focus on the Mesoarchaean interval, and demonstrate preservation of a non-mass-dependent signal that differs from that of preceding and following periods in the Archaean. Our findings point to the persistence of an anoxic early atmosphere, and identify variability within the isotope record that suggests changes in pre-2.45-Gyr-ago atmospheric pathways for non-mass-dependent chemistry and in the ultraviolet transparency of an evolving early atmosphere.


Subject(s)
Atmosphere/chemistry , Oxygen/analysis , Sulfur/analysis , Aerobiosis , Anaerobiosis , Ecosystem , History, Ancient , Sulfur Isotopes , Time Factors
15.
Science ; 317(5846): 1900-3, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17901329

ABSTRACT

High-resolution geochemical analyses of organic-rich shale and carbonate through the 2500 million-year-old Mount McRae Shale in the Hamersley Basin of northwestern Australia record changes in both the oxidation state of the surface ocean and the atmospheric composition. The Mount McRae record of sulfur isotopes captures the widespread and possibly permanent activation of the oxidative sulfur cycle for perhaps the first time in Earth's history. The correlation of the time-series sulfur isotope signals in northwestern Australia with equivalent strata from South Africa suggests that changes in the exogenic sulfur cycle recorded in marine sediments were global in scope and were linked to atmospheric evolution. The data suggest that oxygenation of the surface ocean preceded pervasive and persistent atmospheric oxygenation by 50 million years or more.


Subject(s)
Atmosphere , Geologic Sediments/chemistry , Oxygen , Sulfur , Australia , Bacteria/metabolism , Geologic Sediments/microbiology , Oxidation-Reduction , Seawater , South Africa , Sulfates/chemistry , Sulfates/metabolism , Sulfur/chemistry , Sulfur/metabolism , Sulfur Isotopes/analysis , Time
16.
Science ; 317(5846): 1903-6, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17901330

ABSTRACT

High-resolution chemostratigraphy reveals an episode of enrichment of the redox-sensitive transition metals molybdenum and rhenium in the late Archean Mount McRae Shale in Western Australia. Correlations with organic carbon indicate that these metals were derived from contemporaneous seawater. Rhenium/osmium geochronology demonstrates that the enrichment is a primary sedimentary feature dating to 2501 +/- 8 million years ago (Ma). Molybdenum and rhenium were probably supplied to Archean oceans by oxidative weathering of crustal sulfide minerals. These findings point to the presence of small amounts of O2 in the environment more than 50 million years before the start of the Great Oxidation Event.


Subject(s)
Geologic Sediments/chemistry , Oxygen , Australia , Isotopes/analysis , Molybdenum/analysis , Oceans and Seas , Osmium/analysis , Oxidation-Reduction , Oxygen/analysis , Rhenium/analysis , Seawater/chemistry , Sulfur/analysis , Sulfur Isotopes/analysis , Temperature , Uranium/analysis
17.
Astrobiology ; 7(4): 684-704, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17723098

ABSTRACT

Abundant graphite particles occur in amphibolite-grade quartzite of the Archean-Paleoproterozoic Wutai Metamorphic Complex in the Wutaishan area of North China. Petrographic thin section observations suggest that the graphite particles occur within and between quartzite clasts and are heterogeneous in origin. Using HF maceration techniques, the Wutai graphite particles were extracted for further investigation. Laser Raman spectroscopic analysis of a population of extracted graphite discs indicated that they experienced a maximum metamorphic temperature of 513 +/- 50 degrees C, which is consistent with the metamorphic grade of the host rock and supports their indigenicity. Scanning and transmission electron microscopy revealed that the particles bear morphological features (such as hexagonal sheets of graphite crystals) related to metamorphism and crystal growth, but a small fraction of them (graphite discs) are characterized by a circular morphology, distinct marginal concentric folds, surficial wrinkles, and complex nanostructures. Ion microprobe analysis of individual graphite discs showed that their carbon isotope compositions range from -7.4 per thousand to -35.9 per thousand V-PDB (Vienna Pee Dee Belemnite), with an average of -20.3 per thousand, which is comparable to bulk analysis of extracted carbonaceous material. The range of their size, ultrastructures, and isotopic signatures suggests that the morphology and geochemistry of the Wutai graphite discs were overprinted by metamorphism and their ultimate carbon source probably had diverse origins that included abiotic processes. We considered both biotic and abiotic origins of the carbon source and graphite disc morphologies and cannot falsify the possibility that some circular graphite discs characterized by marginal folds and surficial wrinkles represent deflated, compressed, and subsequently graphitized organic-walled vesicles. Together with reports by other authors of acanthomorphic acritarchs from greenschist-amphibolite-grade metamorphic rocks, this study suggests that it is worthwhile to examine carbonaceous materials preserved in highly metamorphosed rocks for possible evidence of ancient life.


Subject(s)
Archaea/ultrastructure , Fossils , Graphite/analysis , Paleontology/methods , Altitude , China , Geography , Geological Phenomena , Geology , Metamorphosis, Biological
18.
Science ; 310(5753): 1477-9, 2005 Dec 02.
Article in English | MEDLINE | ID: mdl-16322453

ABSTRACT

The environmental expression of sulfur compound disproportionation has been placed between 640 and 1050 million years ago (Ma) and linked to increases in atmospheric oxygen. These arguments have their basis in temporal changes in the magnitude of 34S/32S fractionations between sulfate and sulfide. Here, we present a Proterozoic seawater sulfate isotope record that includes the less abundant sulfur isotope 33S. These measurements imply that sulfur compound disproportionation was an active part of the sulfur cycle by 1300 Ma and that progressive Earth surface oxygenation may have characterized the Mesoproterozoic.


Subject(s)
Environment , Prokaryotic Cells , Sulfur , Eukaryotic Cells/metabolism , Evolution, Planetary , Geologic Sediments , Oxidation-Reduction , Oxygen , Prokaryotic Cells/metabolism , Seawater , Sulfur/metabolism , Sulfur Isotopes
19.
Science ; 310(5747): 471-4, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16195425

ABSTRACT

Laterally extensive black shales were deposited on the São Francisco craton in southeastern Brazil during low-latitude Neoproterozoic glaciation approximately 740 to 700 million years ago. These rocks contain up to 3.0 weight % organic carbon, which we interpret as representing the preserved record of abundant marine primary productivity from glacial times. Extractable biomarkers reflect a complex and productive microbial ecosystem, including both phototrophic bacteria and eukaryotes, living in a stratified ocean with thin or absent sea ice, oxic surface waters, and euxinic conditions within the photic zone. Such an environment provides important constraints for parts of the "Snowball Earth" hypothesis.


Subject(s)
Carbon/analysis , Ecosystem , Geologic Sediments/chemistry , Ice Cover , Organic Chemicals/analysis , Photosynthesis , Seawater/microbiology , Bacterial Physiological Phenomena , Biomarkers/analysis , Brazil , Carbon Isotopes/analysis , Carbonates/analysis , Cyanobacteria/physiology , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL