Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Drugs Ther ; 37(4): 743-755, 2023 08.
Article in English | MEDLINE | ID: mdl-35460392

ABSTRACT

PURPOSE: AMG 986 is a novel apelin receptor (APJ) agonist that improves cardiac contractility in animal models without adversely impacting hemodynamics. This phase 1b study evaluated the safety/tolerability, pharmacokinetics, and pharmacodynamics of AMG 986 in healthy subjects and patients with heart failure (HF). METHODS: Healthy adults (Parts A/B) and HF patients (Part C) aged 18-85 years were randomized 3:1 to single-dose oral/IV AMG 986 or placebo (Part A); multiple-dose oral/IV AMG 986 or placebo (Part B); or escalating-dose oral AMG 986 or placebo (Part C). PRIMARY ENDPOINT: treatment-emergent adverse events, laboratory values/vital signs/ECGs; others included AMG 986 pharmacokinetics, left ventricular (LV) function. RESULTS: Overall, 182 subjects were randomized (AMG 986/healthy: n = 116, placebo, n = 38; AMG 986/HF: n = 20, placebo, n = 8). AMG 986 had acceptable safety profile; no clinically significant dose-related impact on safety parameters up to 650 mg/day was observed. AMG 986 exposures increased nonlinearly with increasing doses; minimal accumulation was observed. In HF with reduced ejection fraction patients, there were numerical increases in percent changes from baseline in LV ejection fraction and stroke volume by volumetric assessment with AMG 986 vs placebo (stroke volume increase not recapitulated by Doppler). CONCLUSIONS: In healthy subjects and HF patients, short-term AMG 986 treatment was well tolerated. Consistent with this observation, clinically meaningful pharmacodynamic effects in HF patients were not observed. Changes in ejection fraction and stroke volume in HF patients suggest additional studies may be needed to better define the clinical utility and optimal dosing for this molecule. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT03276728. DATE OF REGISTRATION: September 8, 2017.


Subject(s)
Heart Failure , Adult , Humans , Apelin Receptors/therapeutic use , Healthy Volunteers , Double-Blind Method , Heart Failure/diagnosis , Heart Failure/drug therapy , Ventricular Function, Left , Stroke Volume
2.
Cell Rep Med ; 1(4): 100057, 2020 07 21.
Article in English | MEDLINE | ID: mdl-33205064

ABSTRACT

Experimental fibroblast growth factor 21 (FGF21) analogs can improve lipid profiles in patients with metabolic diseases. However, their effects on markers of insulin sensitivity appear to be minimal, potentially because of insufficient exposure. Systemic drug levels vary from sub-pharmacological to demonstrating pharmacodynamic effects but with dose-limiting adverse events. Here we report results from a phase 1 multiple ascending dose study of AKR-001, an Fc-FGF21 fusion protein engineered for sustained systemic pharmacologic exposure, in individuals with type 2 diabetes. With a half-life of 3-3.5 days, the peak-to-trough ratio under steady-state conditions is approximately 2 following QW dosing. AKR-001 appears to demonstrate pharmacodynamic effects on serum markers of insulin sensitivity and acceptable tolerability up to and including 70 mg QW. Positive trends in lipoprotein profile, including triglycerides, non-high-density lipoprotein (non-HDL) cholesterol, HDL-C, and apolipoproteins B and C3 are consistent with other FGF21 analogs. AKR-001's clinical profile supports further evaluation as a treatment for metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Fibroblast Growth Factors , Adult , Female , Humans , Male , Middle Aged , Blood Glucose/drug effects , Body Weight/drug effects , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Fibroblast Growth Factors/pharmacokinetics , Fibroblast Growth Factors/pharmacology , Insulin/metabolism , Insulin Resistance/physiology , Lipid Metabolism/drug effects , Lipids/blood , Obesity/drug therapy , Placebo Effect , Triglycerides/blood , United States
3.
Bone ; 81: 364-369, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26232375

ABSTRACT

Romosozumab inhibits sclerostin, thereby increasing bone formation and decreasing bone resorption. This dual effect of romosozumab leads to rapid and substantial increases in areal bone mineral density (aBMD) as measured by dual-energy X-ray absorptiometry (DXA). In a phase 1b, randomized, double-blind, placebo-controlled study, romosozumab or placebo was administered to 32 women and 16 men with low aBMD for 3 months, with a further 3-month follow-up: women received six doses of 1 or 2mg/kg every 2 weeks (Q2W) or three doses of 2 or 3mg/kg every 4 weeks (Q4W); men received 1mg/kg Q2W or 3mg/kg Q4W. Quantitative computed tomography (QCT) scans at lumbar (L1-2) vertebrae and high-resolution QCT (HR-QCT) scans at thoracic vertebra (T12) were analyzed in a subset of subjects at baseline, month 3, and month 6. The QCT subset included 24 romosozumab and 9 placebo subjects and the HR-QCT subset included 11 romosozumab and 3 placebo subjects. The analyses pooled the romosozumab doses. Linear finite element modeling of bone stiffness was performed. Compared with placebo, the romosozumab group showed improvements at month 3 for trabecular BMD by QCT and HR-QCT, HR-QCT trabecular bone volume fraction (BV/TV) and separation, density-weighted cortical thickness, and QCT stiffness (all p<0.05). At month 6, improvements from baseline were observed in QCT trabecular BMD and stiffness, and in HR-QCT BMD, trabecular BV/TV and separation, density-weighted cortical thickness, and stiffness in the romosozumab group (all p<0.05 compared with placebo). The mean (SE) increase in HR-QCT stiffness with romosozumab from baseline was 26.9% ± 6.8% and 35.0% ±6.8% at months 3 and 6, respectively; subjects administered placebo had changes of -2.7% ± 13.4% and -6.4% ± 13.4%, respectively. In conclusion, romosozumab administered for 3 months resulted in rapid and large improvements in trabecular and cortical bone mass and structure as well as whole bone stiffness, which continued 3 months after the last romosozumab dose.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Bone Density Conservation Agents/administration & dosage , Bone and Bones/drug effects , Osteoporosis/drug therapy , Aged , Aged, 80 and over , Antibodies, Monoclonal/therapeutic use , Bone Density , Bone Density Conservation Agents/therapeutic use , Bone Resorption , Double-Blind Method , Female , Finite Element Analysis , Humans , Lumbar Vertebrae/drug effects , Male , Middle Aged , Postmenopause , Thoracic Vertebrae/drug effects , Tomography, X-Ray Computed
4.
Pharmacol Res Perspect ; 2(2): e00033, 2014 Apr.
Article in English | MEDLINE | ID: mdl-25505582

ABSTRACT

Drug-disease interactions involving therapeutic proteins that target cytokines and potentially impact cytochrome P450 (CYP) enzymes have been of increased interest to drug regulatory agencies and industry sponsors in recent years. This parallel-group open-label study evaluated the effects of the monoclonal antibody denosumab, an inhibitor of the cytokine RANKL, on the pharmacokinetics of the probe CYP3A4 substrate midazolam in postmenopausal women with osteoporosis. The pharmacokinetics of a 2 mg oral dose of midazolam was evaluated on days 1 and 16. Subjects in Group A received a 60 mg subcutaneous dose of denosumab on day 2, 2 weeks before the second midazolam dose, while subjects in Group B did not. For Group A (n = 17), point estimates for the ratio of least square means for midazolam exposures based on maximum observed plasma concentration (C max) and areas under the plasma concentration-time curve (AUCs) on day 16 versus day 1 ranged from 1.02 to 1.04 and 90% confidence intervals were within 0.80-1.25. No period effect was observed for Group B (n = 8). Midazolam and denosumab coadministration was safe and well tolerated. Inhibition of the cytokine RANKL by denosumab does not affect CYP3A4 in postmenopausal women with osteoporosis and will not alter the pharmacokinetics of drugs metabolized by this enzyme. These results are consistent with data suggesting that RANKL does not impact markers of inflammation and represent the first clinical data demonstrating a lack of effect on CYP3A4 of a therapeutic protein that is a cytokine modulator.

SELECTION OF CITATIONS
SEARCH DETAIL