Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cancer Discov ; 13(8): 1922-1947, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37191437

ABSTRACT

Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/ßc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/ßc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/ßc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance. SIGNIFICANCE: Stemness is a hallmark of many cancers and is largely responsible for disease emergence, progression, and relapse. Our finding that clinically significant stemness programs in AML are directly regulated by different stoichiometries of cytokine receptors represents a hitherto unexplained mechanism underlying cell-fate decisions in cancer stem cell hierarchies. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Cytokine , Humans , Receptors, Cytokine/therapeutic use , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Phosphorylation , Signal Transduction , Cell Proliferation , Neoplastic Stem Cells
2.
bioRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034724

ABSTRACT

Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.

3.
Leukemia ; 36(11): 2690-2704, 2022 11.
Article in English | MEDLINE | ID: mdl-36131042

ABSTRACT

Many cancers are organized as cellular hierarchies sustained by cancer stem cells (CSC), whose eradication is crucial for achieving long-term remission. Difficulties to isolate and undertake in vitro and in vivo experimental studies of rare CSC under conditions that preserve their original properties currently constitute a bottleneck for identifying molecular mechanisms involving coding and non-coding genomic regions that govern stemness. We focussed on acute myeloid leukemia (AML) as a paradigm of the CSC model and developed a patient-derived system termed OCI-AML22 that recapitulates the cellular hierarchy driven by leukemia stem cells (LSC). Through classical flow sorting and functional analyses, we established that a single phenotypic population is highly enriched for LSC. The LSC fraction can be easily isolated and serially expanded in culture or in xenografts while faithfully recapitulating functional, transcriptional and epigenetic features of primary LSCs. A novel non-coding regulatory element was identified with a new computational approach using functionally validated primary AML LSC fractions and its role in LSC stemness validated through efficient CRISPR editing using methods optimized for OCI-AML22 LSC. Collectively, OCI-AML22 constitutes a valuable resource to uncover mechanisms governing CSC driven malignancies.


Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology
4.
Nat Cell Biol ; 24(6): 872-884, 2022 06.
Article in English | MEDLINE | ID: mdl-35668135

ABSTRACT

Mitochondrial metabolites regulate leukaemic and normal stem cells by affecting epigenetic marks. How mitochondrial enzymes localize to the nucleus to control stem cell function is less understood. We discovered that the mitochondrial metabolic enzyme hexokinase 2 (HK2) localizes to the nucleus in leukaemic and normal haematopoietic stem cells. Overexpression of nuclear HK2 increases leukaemic stem cell properties and decreases differentiation, whereas selective nuclear HK2 knockdown promotes differentiation and decreases stem cell function. Nuclear HK2 localization is phosphorylation-dependent, requires active import and export, and regulates differentiation independently of its enzymatic activity. HK2 interacts with nuclear proteins regulating chromatin openness, increasing chromatin accessibilities at leukaemic stem cell-positive signature and DNA-repair sites. Nuclear HK2 overexpression decreases double-strand breaks and confers chemoresistance, which may contribute to the mechanism by which leukaemic stem cells resist DNA-damaging agents. Thus, we describe a non-canonical mechanism by which mitochondrial enzymes influence stem cell function independently of their metabolic function.


Subject(s)
Hexokinase , Leukemia, Myeloid, Acute , Chromatin/metabolism , DNA/metabolism , Hematopoietic Stem Cells/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism
5.
Cell Stem Cell ; 28(10): 1838-1850.e10, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34343492

ABSTRACT

It is critical to understand how human quiescent long-term hematopoietic stem cells (LT-HSCs) sense demand from daily and stress-mediated cues and then transition into bioenergetically active progeny to differentiate and meet these cellular needs. However, the demand-adapted regulatory circuits of these early steps of hematopoiesis are largely unknown. Here we show that lysosomes, sophisticated nutrient-sensing and signaling centers, are regulated dichotomously by transcription factor EB (TFEB) and MYC to balance catabolic and anabolic processes required for activating LT-HSCs and guiding their lineage fate. TFEB-mediated induction of the endolysosomal pathway causes membrane receptor degradation, limiting LT-HSC metabolic and mitogenic activation, promoting quiescence and self-renewal, and governing erythroid-myeloid commitment. In contrast, MYC engages biosynthetic processes while repressing lysosomal catabolism, driving LT-HSC activation. Our study identifies TFEB-mediated control of lysosomal activity as a central regulatory hub for proper and coordinated stem cell fate determination.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Hematopoiesis , Hematopoietic Stem Cells , Cell Differentiation , Hematopoietic Stem Cells/cytology , Humans , Lysosomes , Signal Transduction
6.
Nat Immunol ; 22(6): 723-734, 2021 06.
Article in English | MEDLINE | ID: mdl-33958784

ABSTRACT

Continuous supply of immune cells throughout life relies on the delicate balance in the hematopoietic stem cell (HSC) pool between long-term maintenance and meeting the demands of both normal blood production and unexpected stress conditions. Here we identified distinct subsets of human long-term (LT)-HSCs that responded differently to regeneration-mediated stress: an immune checkpoint ligand CD112lo subset that exhibited a transient engraftment restraint (termed latency) before contributing to hematopoietic reconstitution and a primed CD112hi subset that responded rapidly. This functional heterogeneity and CD112 expression are regulated by INKA1 through direct interaction with PAK4 and SIRT1, inducing epigenetic changes and defining an alternative state of LT-HSC quiescence that serves to preserve self-renewal and regenerative capacity upon regeneration-mediated stress. Collectively, our data uncovered the molecular intricacies underlying HSC heterogeneity and self-renewal regulation and point to latency as an orchestrated physiological response that balances blood cell demands with preserving a stem cell reservoir.


Subject(s)
Cell Self Renewal/immunology , Hematopoietic Stem Cells/physiology , Immune Reconstitution , Multipotent Stem Cells/physiology , Stress, Physiological/immunology , Adult , Animals , Cell Self Renewal/genetics , Cells, Cultured , Epigenesis, Genetic/immunology , Female , Fetal Blood/cytology , Flow Cytometry , Gene Knockdown Techniques , Hematopoiesis , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunomagnetic Separation , Infant, Newborn , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Middle Aged , Nectins/metabolism , Primary Cell Culture , RNA-Seq , Single-Cell Analysis , Sirtuin 1/metabolism , Stress, Physiological/genetics , Transplantation, Heterologous , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
7.
Blood Cancer Discov ; 2(1): 32-53, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33458693

ABSTRACT

Acute myeloid leukemia (AML) is a caricature of normal hematopoiesis, driven from leukemia stem cells (LSC) that share some hematopoietic stem cell (HSC) programs including responsiveness to inflammatory signaling. Although inflammation dysregulates mature myeloid cells and influences stemness programs and lineage determination in HSC by activating stress myelopoiesis, such roles in LSC are poorly understood. Here, we show that S1PR3, a receptor for the bioactive lipid sphingosine-1-phosphate, is a central regulator which drives myeloid differentiation and activates inflammatory programs in both HSC and LSC. S1PR3-mediated inflammatory signatures varied in a continuum from primitive to mature myeloid states across AML patient cohorts, each with distinct phenotypic and clinical properties. S1PR3 was high in LSC and blasts of mature myeloid samples with linkages to chemosensitivity, while S1PR3 activation in primitive samples promoted LSC differentiation leading to eradication. Our studies open new avenues for therapeutic target identification specific for each AML subset.


Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Sphingosine-1-Phosphate Receptors , Cell Differentiation , Hematopoietic Stem Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism
8.
Cell Stem Cell ; 28(3): 488-501.e10, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33242413

ABSTRACT

Lifelong blood production requires long-term hematopoietic stem cells (LT-HSCs), marked by stemness states involving quiescence and self-renewal, to transition into activated short-term HSCs (ST-HSCs) with reduced stemness. As few transcriptional changes underlie this transition, we used single-cell and bulk assay for transposase-accessible chromatin sequencing (ATAC-seq) on human HSCs and hematopoietic stem and progenitor cell (HSPC) subsets to uncover chromatin accessibility signatures, one including LT-HSCs (LT/HSPC signature) and another excluding LT-HSCs (activated HSPC [Act/HSPC] signature). These signatures inversely correlated during early hematopoietic commitment and differentiation. The Act/HSPC signature contains CCCTC-binding factor (CTCF) binding sites mediating 351 chromatin interactions engaged in ST-HSCs, but not LT-HSCs, enclosing multiple stemness pathway genes active in LT-HSCs and repressed in ST-HSCs. CTCF silencing derepressed stemness genes, restraining quiescent LT-HSCs from transitioning to activated ST-HSCs. Hence, 3D chromatin interactions centrally mediated by CTCF endow a gatekeeper function that governs the earliest fate transitions HSCs make by coordinating disparate stemness pathways linked to quiescence and self-renewal.


Subject(s)
Chromatin , Hematopoietic Stem Cells , Cell Differentiation , Cell Division , Hematopoiesis , Humans
9.
Cell Stem Cell ; 25(5): 639-653.e7, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31631013

ABSTRACT

Cellular stress responses serve as crucial decision points balancing persistence or culling of hematopoietic stem cells (HSCs) for lifelong blood production. Although strong stressors cull HSCs, the linkage between stress programs and self-renewal properties that underlie human HSC maintenance remains unknown, particularly at quiescence exit when HSCs must also dynamically shift metabolic state. Here, we demonstrate distinct wiring of the sphingolipidome across the human hematopoietic hierarchy and find that genetic or pharmacologic modulation of the sphingolipid enzyme DEGS1 regulates lineage differentiation. Inhibition of DEGS1 in hematopoietic stem and progenitor cells during the transition from quiescence to cellular activation with N-(4-hydroxyphenyl) retinamide activates coordinated stress pathways that coalesce on endoplasmic reticulum stress and autophagy programs to maintain immunophenotypic and functional HSCs. Thus, our work identifies a linkage between sphingolipid metabolism, proteostatic quality control systems, and HSC self-renewal and provides therapeutic targets for improving HSC-based cellular therapeutics.


Subject(s)
Cell Self Renewal/genetics , Fatty Acid Desaturases/antagonists & inhibitors , Fenretinide/pharmacology , Hematopoietic Stem Cells/metabolism , Proteostasis/genetics , Sphingolipids/metabolism , Animals , Autophagy/drug effects , Autophagy/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Self Renewal/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Female , Gene Expression Regulation/genetics , Gene Knockdown Techniques , Hematopoietic Stem Cells/enzymology , Humans , Male , Mass Spectrometry , Mice , Mice, Inbred NOD , Proteostasis/drug effects , RNA, Small Interfering , RNA-Seq , Single-Cell Analysis , Sphingolipids/chemistry , Transplantation, Heterologous
10.
Blood ; 133(20): 2198-2211, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30796022

ABSTRACT

There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells. A consistent effect observed for the top hits was the ability to restrain early repopulation kinetics while preserving regenerative potential. Overexpression (OE) of the most promising candidate, the orphan gene C3orf54/INKA1, in a patient-derived AML model (8227) promoted the retention of LSCs in a primitive state manifested by relative expansion of CD34+ cells, accumulation of cells in G0, and reduced output of differentiated progeny. Despite delayed early repopulation, at later times, INKA1-OE resulted in the expansion of self-renewing LSCs. In contrast, INKA1 silencing in primary AML reduced regenerative potential. Mechanistically, our multidimensional confocal analysis found that INKA1 regulates G0 exit by interfering with nuclear localization of its target PAK4, with concomitant reduction of global H4K16ac levels. These data identify INKA1 as a novel regulator of LSC latency and reveal a link between the regulation of stem cell kinetics and pool size during regeneration.


Subject(s)
Gene Expression Regulation, Leukemic , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Neoplastic Stem Cells/metabolism , Animals , Cell Cycle Checkpoints , Cell Line, Tumor , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mice, Inbred NOD , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Up-Regulation , p21-Activated Kinases/analysis
11.
Nat Genet ; 48(12): 1481-1489, 2016 12.
Article in English | MEDLINE | ID: mdl-27776115

ABSTRACT

Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL). Here we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG is a hallmark of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt uses a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivation domains of ERG, but it inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia in which DUX4 deregulation results in loss of function of ERG, either by deletion or induced expression of an isoform that is a dominant-negative inhibitor of wild-type ERG function.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Deletion , Gene Expression Regulation, Neoplastic , Gene Rearrangement , Homeodomain Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , Cell Transformation, Neoplastic/pathology , Gene Expression Profiling , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Isoforms , Transcriptional Regulator ERG/genetics , Young Adult
13.
PLoS One ; 11(4): e0153978, 2016.
Article in English | MEDLINE | ID: mdl-27111551

ABSTRACT

Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both physisorption and covalent coupling of BSP are similarly effective, feasible methods, although a higher BSP concentration is recommended.


Subject(s)
Integrin-Binding Sialoprotein/chemistry , Prostheses and Implants , Titanium , Orthopedics , Surface Properties
14.
Cancer Cell ; 29(2): 214-28, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26832662

ABSTRACT

To investigate miRNA function in human acute myeloid leukemia (AML) stem cells (LSC), we generated a prognostic LSC-associated miRNA signature derived from functionally validated subpopulations of AML samples. For one signature miRNA, miR-126, high bioactivity aggregated all in vivo patient sample LSC activity into a single sorted population, tightly coupling miR-126 expression to LSC function. Through functional studies, miR-126 was found to restrain cell cycle progression, prevent differentiation, and increase self-renewal of primary LSC in vivo. Compared with prior results showing miR-126 regulation of normal hematopoietic stem cell (HSC) cycling, these functional stem effects are opposite between LSC and HSC. Combined transcriptome and proteome analysis demonstrates that miR-126 targets the PI3K/AKT/MTOR signaling pathway, preserving LSC quiescence and promoting chemotherapy resistance.


Subject(s)
Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , MicroRNAs/physiology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Gene Knockdown Techniques , Heterografts , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mice, SCID , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
15.
Science ; 351(6269): aab2116, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26541609

ABSTRACT

In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.


Subject(s)
Cell Lineage/physiology , Erythroid Cells/cytology , Hematopoiesis/physiology , Megakaryocyte Progenitor Cells/cytology , Megakaryocytes/cytology , Myeloid Cells/cytology , Adult , Antigens, CD34/analysis , Cell Lineage/genetics , Cell Separation , Cells, Cultured , Fetal Blood/cytology , Gene Expression Profiling , Hematopoiesis/genetics , Humans , Liver/cytology , Liver/embryology , Multipotent Stem Cells/cytology , Transcription, Genetic
16.
Mol Ther ; 23(1): 63-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25189742

ABSTRACT

Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.


Subject(s)
Antigens, CD/genetics , Genetic Therapy/methods , Glycoproteins/genetics , Hematopoietic Stem Cells/immunology , Lentivirus/genetics , Peptides/genetics , AC133 Antigen , Animals , Antigens, CD/immunology , Antigens, CD34/genetics , Antigens, CD34/immunology , Gene Expression , Genetic Vectors , Glycoproteins/immunology , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/immunology , Granulomatous Disease, Chronic/pathology , Granulomatous Disease, Chronic/therapy , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hematopoietic Stem Cells/pathology , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Peptides/immunology , Primary Cell Culture , Transduction, Genetic , Vesicular stomatitis Indiana virus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
17.
Stem Cells Dev ; 24(6): 714-23, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25517513

ABSTRACT

Hematopoietic stem cells (HSCs) are an important target cell population for gene therapy since they can reconstitute the entire hematopoietic system. HSC-enriched cell populations can be recognized based on cell surface marker expression, such as CD34, which is broadly expressed on immature and partially differentiated cells. In mice, co-expression of CD34 and CD105 was previously shown to be relatively more specific for the most immature, long-term repopulating HSCs. Here, we evaluated whether CD105, which is expressed on 30%-80% of CD34(+) cells, is a marker also for human long-term repopulating HSCs. Therefore, we tracked the mature progeny of CD34(+) cells transduced with the CD105-targeted lentiviral vector CD105-LV in xenotolerant mice. Transduction was blocked with soluble CD105 protein confirming specificity. Importantly, CD105-LV transduced human CD34(+) cells engrafted in NOD-scid IL2Rγ(-/-) mice with up to 20% reporter gene-positive cells detected long term in all human hematopoietic lineages in bone marrow (BM), spleen, and blood. In addition, competitive repopulation experiments in mice showed a superior engraftment of CD105-LV transduced CD34(+) cells in BM and spleen compared with cells transduced with a conventional nontargeted lentiviral vector. Thus, human CD34(+)/CD105(+) cells are enriched for early HSCs with high repopulating capacity. Targeting this cell population with CD105-LV offers a novel gene transfer strategy to reach high engraftment rates of transduced cells and highlights the applicability of receptor-targeted vectors to trace cell subsets offering an alternative to prospective isolation by surface markers.


Subject(s)
Antigens, CD/metabolism , Hematopoietic Stem Cells/metabolism , Receptors, Cell Surface/metabolism , Stem Cell Transplantation/methods , Animals , Antigens, CD/genetics , Antigens, CD34/genetics , Antigens, CD34/metabolism , Cell Differentiation , Endoglin , Gene Targeting , Hematopoietic Stem Cells/cytology , Humans , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Cell Surface/genetics
18.
Curr Gene Ther ; 14(6): 447-60, 2014.
Article in English | MEDLINE | ID: mdl-25245086

ABSTRACT

Several Phase I/II clinical trials aiming at the correction of X-linked CGD by gene transfer into hematopoietic stem cells (HSCs) have demonstrated the therapeutic potential of gene modified autologous HSCs for the treatment of CGD. Resolution of therapy-resistant bacterial and fungal infections in liver, lung and spinal canal of CGD patients were clearly documented in all trials. However, clinical benefits were not sustained over time due to the failure of gene transduced cells to engraft long-term. Moreover, severe adverse effects were observed in some of the treated patients due to insertional mutagenesis leading to the activation of growth promoting genes and to myeloid malignancy. These setbacks fostered the development of novel safety and efficacy improved vectors that have already entered or are about to enter the clinics. Meanwhile, ongoing research is constantly refining the CGD disease phenotype, including the definition of factors that may explain the unique engraftment phenotype observed in CGD gene therapy trials. This review provides a condensed overview on the current knowledge of the molecular pathomechanisms and clinical manifestations of CGD and summarizes the lessons learned from clinical gene therapy trials, the preclinical progress in vector design and the future perspectives for the gene therapy of CGD.


Subject(s)
Genetic Therapy , Genetic Vectors/therapeutic use , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Animals , Humans
19.
Antioxid Redox Signal ; 21(11): 1605-19, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-24762207

ABSTRACT

SIGNIFICANCE: Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. RECENT ADVANCES: ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROS(high) short-term repopulating stem cells, and ROS(low) quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. CRITICAL ISSUES: Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. FUTURE DIRECTIONS: Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development.


Subject(s)
Bone Marrow Cells , Bone Marrow/metabolism , Cell Differentiation , Cell Movement , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Stem Cell Niche/physiology , Animals , Cell Cycle , Cell Proliferation , Hematologic Neoplasms/metabolism , Humans , Inflammation/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism
20.
Mol Ther Methods Clin Dev ; 1: 14037, 2014.
Article in English | MEDLINE | ID: mdl-26015977

ABSTRACT

Innovative approaches for the treatment of rare inherited diseases are hampered by limited availability of patient derived samples for preclinical research. This also applies for the evaluation of novel vector systems for the gene therapy of monogenic hematological diseases like X-linked chronic granulomatous disease (X-CGD), a severe primary immunodeficiency caused by mutations in the gp91(phox) subunit of the phagocytic NADPH oxidase. Since current gene therapy protocols involve ex vivo gene modification of autologous CD34(+) hematopoietic stem cells (HSC), the ideal preclinical model should simulate faithfully this procedure. However, the low availability of patient-derived CD34(+) cells limits the feasibility of this approach. Here, we describe a straightforward experimental strategy that circumvents this limitation. The knock down of gp91(phox) expression upon lentiviral delivery of shRNAs into CD34(+) cells from healthy donors generates sufficient amounts of X-CGD CD34(+) cells which subsequently can be used for the evaluation of novel gene therapeutic strategies using a codon-optimized gp91(phox) transgene. We have used this strategy to test the potential of a novel gene therapy vector for X-CGD.

SELECTION OF CITATIONS
SEARCH DETAIL
...