Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Sci Rep ; 11(1): 16800, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408243

ABSTRACT

Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB.


Subject(s)
Aorta/surgery , Cannula/standards , Cardiac Surgical Procedures/instrumentation , Cardiopulmonary Bypass/methods , Animals , Cerebrovascular Circulation/physiology , Computer Simulation , Disease Models, Animal , Hemodynamics , Humans , Risk Factors , Stroke/physiopathology , Stroke/prevention & control , Swine , Thromboembolism/physiopathology , Thromboembolism/prevention & control
2.
Artif Organs ; 45(9): 1024-1035, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33851427

ABSTRACT

As a leading cause of death worldwide, heart failure is a serious medical condition in which many critically ill patients require temporary mechanical circulatory support (MCS) as a bridge-to-recovery or bridge-to-decision. In many cases, the TandemHeart system is used to unload the left heart by draining blood from the left atrium (LA) to the femoral artery via a transseptal multistage cannula. However, even though the correct positioning of the cannula is crucial for a safe treatment, the long cannula tip currently used in transseptal cannulas complicates positioning, making the cannula vulnerable to displacement during MCS. To overcome these limitations, we propose the development of a new tipless transseptal cannula with improved hemodynamic properties. We discuss the tipless cannula concept by comparing it to the common multistage cannula concept using computational fluid dynamics simulations and assess the flow field in the LA, the wall shear stresses (WSS), and the pressure loss. Across the two distinct time points of end-systole and end-diastole and two drainage flow rates of 3.5 and 5.0 L/min, we find a more homogeneous inlet flow pattern for the tipless cannula concept, accompanied by a remarkably reduced area of platelet-activating WSS (up to 10-times smaller area compared to the multistage cannula). Moreover, pressure loss is up to 14.5% lower in the tipless cannula concept, confirming overall improved hemodynamic properties of the tipless cannula concept. Finally, a diameter-dependent study reveals that lower WSS and pressure losses can be further reduced by large-lumen designs for any simulation setting. Overall, our results suggest that a tipless cannula concept remedies the crucial disadvantages of a long-tip multistage cannula by reducing the risk of misplacement, and it furthermore promotes optimized hemodynamics. With this successful proof-of-concept, we underscore the potential for and encourage the realization of further experimental investigations regarding the development of a tipless transseptal cannula for MCS.


Subject(s)
Cannula , Heart-Assist Devices , Hemodynamics/physiology , Computer Simulation , Equipment Design , Humans , Models, Cardiovascular , Proof of Concept Study
3.
ASAIO J ; 66(8): 899-908, 2020 08.
Article in English | MEDLINE | ID: mdl-32740350

ABSTRACT

Rotating impeller actuated by electromagnet has been a key technological innovation which surpassed earlier limitations of pulsatile pumps. Current impeller design, however, is alien to the functional unit of the human circulatory system and remains a potential cause of adverse prothrombotic events such as hemolysis or pump thrombosis by forcing blood cells to pass over a narrow space available within the rapidly alternating blades attached along its central hub, creating fundamentally a nonphysiologic flow, especially for miniaturized percutaneous blood pumps. Here, we present a biologically inspired, open, helicoid (BiO-H) impeller design for a circulatory assist device that has a fundamentally different footprint from the conventional Archimedean screw-based impeller designs by implementing new design features inspired by an avian right atrioventricular valve. Design parameters including an inner diameter, helix height, overall height, helix revolutions/pitch, blade length, blade thickness, introductory blade angle, number of blades, and blade shape were optimized for maximum output volumetric flow rate through the parametric analysis in computational fluid dynamics simulation. BiO-H shows an improved flow path with 2.25-fold less cross-sectional area loss than the conventional impeller designs. BiO-H with a diameter of 15 mm resulted in a maximum flow rate of 25 L/min at 15,000 revolutions per minute in simulation and showed further improved pressure-flow relationship in benchtop experiments. The design shows promise in increasing flow and could serve as a new impeller design for future blood pumps.


Subject(s)
Computer Simulation , Equipment Design , Heart-Assist Devices , Hydrodynamics , Hemodynamics/physiology , Humans
4.
ASAIO J ; 65(8): 864-873, 2019.
Article in English | MEDLINE | ID: mdl-31192838

ABSTRACT

The suitability of computational fluid dynamics (CFD) as a regulatory tool for safety assessment of medical devices is still limited: A lack of standardized validation and evaluation methods impairs the quantitative comparability and reliability of simulation studies, particularly regarding the assessment of hemocompatibility. This study investigated important aspects of validation and verification for three common turbulence modeling approaches (laminar, k-ω shear stress transport [SST] and stress-blended eddy simulation [SBES]) and three different mesh refinements. Simulation results for pressure head, characteristic velocity, and shear stress for the benchmark blood pump model of the Food and Drug Administration critical path initiative were compared with its published experimental results. For the highest mesh resolution, all three models predicted the hydraulic pump characteristics with a relative deviation averaged over six operating conditions below 6.1%. In addition, the SBES model showed an accurate agreement of the characteristic velocity field in the pump's diffusor region (relative error <2.9%), while the laminar and SST model calculated significantly elevated and deviating velocity amplitudes (>43.6%). The ability to quantify shear stress is fundamental for the prediction of blood damage. In this respect, this study demonstrated that: 1) a close agreement and validation of both pressure head and characteristic velocity was feasible and 2) the shear stress quantification demanded higher near-wall mesh resolutions, although such high resolutions were not required for the validation of only pressure heads or velocity. Hence, a mesh verification analysis for shear stresses may prove significant for the development of credible CFD blood damage predictions in the future.


Subject(s)
Computer Simulation , Heart-Assist Devices , Hydrodynamics , Models, Cardiovascular , Humans , Reproducibility of Results , Stress, Mechanical
5.
J Biomech Eng ; 141(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30458464

ABSTRACT

The reduction of excessive, nonphysiologic shear stresses leading to blood trauma can be the key to overcome many of the associated complications in blood recirculating devices. In that regard, computational fluid dynamics (CFD) are gaining in importance for the hydraulic and hemocompatibility assessment. Still, direct hemolysis assessments with CFD remain inaccurate and limited to qualitative comparisons rather than quantitative predictions. An underestimated quantity for improved blood damage prediction accuracy is the influence of near-wall mesh resolution on shear stress quantification in regions of complex flows. This study investigated the necessary mesh refinement to quantify shear stress for two selected, meshing sensitive hotspots within a rotary centrifugal blood pump (the blade leading edge and tip clearance gap). The shear stress in these regions is elevated due to presence of stagnation points and the flow around a sharp edge. The nondimensional mesh characteristic number y+, which is known in the context of turbulence modeling, underestimated the maximum wall shear stress by 60% on average with the recommended value of 1, but was found to be exact below 0.1. To evaluate the meshing related error on the numerical hemolysis prediction, three-dimensional simulations of a generic centrifugal pump were performed with mesh sizes from 3 × 106 to 30 × 106 elements. The respective hemolysis was calculated using an Eulerian scalar transport model. Mesh insensitivity was found below a maximum y+ of 0.2 necessitating 18 × 106 mesh elements. A meshing related error of up to 25% was found for the coarser meshes. Further investigations need to address: (1) the transferability to other geometries and (2) potential adaptions on blood damage estimation models to allow better quantitative predictions.

6.
ASAIO J ; 65(7): 698-706, 2019.
Article in English | MEDLINE | ID: mdl-30134259

ABSTRACT

Inflow malposition during surgery, postoperative pump migration, inflow obstruction, and right ventricular compression are major contributors to low flow and adverse events in patients with ventricular assist devices (VADs). These position abnormalities can lead to adverse events including ischemic stroke. To address these problems, we conducted a virtual anatomical fitting study and hemodynamic simulation on iterative cannula designs, resulting in the EVAHEART 2 with the novel double-cuff tipless (DCT) inflow cannula and smaller pump design. Anatomical fitting was based on computed tomography scans of six patients with heart failure, and a fluid-structure-integration (FSI) model of the left ventricle with a lumped parameter model of the entire cardiovascular system during VAD support was created. Using this model, the hemodynamics of three inflow cannula insertion lengths for two patient-specific ventricles were calculated for both full and partial VAD support. The DCT cannula with the smaller pump housing proved resistant to obstruction even when the pump housing was adjusted. The complete system also had a smaller pump pocket size than the other designs and avoided position abnormalities that commonly lead to adverse events. Compared with conventional cadaver studies, virtual fitting and numerical simulations are more beneficial and economical for iteratively designing medical devices.


Subject(s)
Cannula , Heart Failure/therapy , Heart-Assist Devices , Hemodynamics , Aged , Aged, 80 and over , Computer Simulation , Equipment Design , Female , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Heart-Assist Devices/adverse effects , Humans , Male , Middle Aged , Shear Strength , Thrombosis/etiology
7.
Int J Numer Method Biomed Eng ; 34(4): e2945, 2018 04.
Article in English | MEDLINE | ID: mdl-29181891

ABSTRACT

The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method.


Subject(s)
Aortic Valve/physiology , Hemorheology , Models, Cardiovascular , Numerical Analysis, Computer-Assisted , Pulsatile Flow/physiology , Computer Simulation , Humans , Pressure , Stress, Mechanical
8.
J Tissue Eng Regen Med ; 11(12): 3530-3543, 2017 12.
Article in English | MEDLINE | ID: mdl-28078820

ABSTRACT

Low immunogenicity and high repopulation capacity are crucial determinants for the functional and structural performance of acellular cardiovascular implants. The present study evaluates a detergent-free, non-proteolytic, actin-disassembling regimen (BIO) for decellularization of heart valve and vessel grafts, particularly focusing on their bio-functionality. Rat aortic conduits (rAoC; n = 89) and porcine aortic valve samples (n = 106) are decellularized using detergents (group DET) or the BIO regimen. BIO decellularization results in effective elimination of cellular proteins and significantly improves removal of DNA as compared with group DET, while the extracellular matrix (ECM) structure as well as mechanical properties are preserved. The architecture of rAoC in group BIO allows for improved bio-functionalization with fibronectin (FN) in a standardized rat implantation model: BIO treatment significantly increases speed and amount of autologous medial cellular repopulation in vivo (p < 0.001) and decreases the formation of hyperplastic intima (p < 0.001) as compared with FN-coated DET-decellularized grafts. Moreover, there are no signs of infiltration with inflammatory cells. The present biological, detergent-free, non-proteolytic regimen balances effective decellularization and ECM preservation in cardiovascular grafts, and provides optimized bio-functionality. Additionally, this study implies that the actin-disassembling regimen may be a promising approach for bioengineering of acellular scaffolds from other muscular tissues, as for example myocardium or intestine. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Actins/metabolism , Cardiovascular System/cytology , Detergents/pharmacology , Proteolysis , Animals , Aortic Valve/physiology , Biomechanical Phenomena , Cell Death/drug effects , Fibronectins/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Rats, Sprague-Dawley , Rats, Wistar , Sus scrofa
9.
Ann Biomed Eng ; 45(3): 554-566, 2017 03.
Article in English | MEDLINE | ID: mdl-27464889

ABSTRACT

Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.


Subject(s)
Infusion Pumps , Models, Theoretical , Rheology
10.
J Biomech ; 49(13): 2718-2725, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27298155

ABSTRACT

Subclavian arteries are a possible alternate location for left ventricular assist device (LVAD) outflow grafts due to easier surgical access and application in high risk patients. As vascular blood flow mechanics strongly influence the clinical outcome, insights into the hemodynamics during LVAD support can be used to evaluate different grafting locations. In this study, the feasibility of left and right subclavian artery (SA) grafting was investigated for the HeartWare HVAD with a numerical multiscale model. A 3-D CFD model of the aortic arch was coupled to a lumped parameter model of the cardiovascular system under LVAD support. Grafts in the left and right SA were placed at three different anastomoses angles (90°, 60° and 30°). Additionally, standard grafting of the ascending and descending aorta was modelled. Full support LVAD (5l/min) and partial support LVAD (3l/min) in co-pulsation and counter-pulsation mode were analysed. The grafting positions were investigated regarding coronary and cerebral perfusion. Furthermore, the influence of the anastomosis angle on wall shear stress (WSS) was evaluated. Grafting of left or right subclavian arteries has similar hemodynamic performance in comparison to standard cannula positions. Angularity change of the graft anastomosis from 90° to 30° slightly increases the coronary and cerebral blood flow by 6-9% while significantly reduces the WSS by 35%. Cannulation of the SA is a feasible anastomosis location for the HVAD in the investigated vessel geometry.


Subject(s)
Computer Simulation , Heart-Assist Devices , Hemodynamics , Hydrodynamics , Aorta/physiology , Aorta, Thoracic/physiology , Catheterization , Models, Cardiovascular , Subclavian Artery/physiology
11.
Med Eng Phys ; 38(4): 380-90, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26908181

ABSTRACT

Neurological complications often occur during cardiopulmonary bypass (CPB). Hypoperfusion of brain tissue due to diminished cerebral autoregulation (CA) and thromboembolism from atherosclerotic plaque reduce the cerebral oxygen supply and increase the risk of perioperative stroke. To improve the outcome of cardiac surgeries, patient-specific computational fluid dynamic (CFD) models can be used to investigate the blood flow during CPB. In this study, we establish a computational model of CPB which includes cerebral autoregulation and movement of aortic walls on the basis of in vivo measurements. First, the Baroreflex mechanism, which plays a leading role in CA, is represented with a 0-D control circuit and coupled to the 3-D domain with differential equations as boundary conditions. Additionally a two-way coupled fluid-structure interaction (FSI) model with CA is set up. The wall shear stress (WSS) distribution is computed for the whole FSI domain and a comparison to rigid wall CFD is made. Constant flow and pulsatile flow CPB is considered. Rigid wall CFD delivers higher wall shear stress values than FSI simulations, especially during pulsatile perfusion. The flow rates through the supraaortic vessels are almost not affected, if considered as percentages of total cannula output. The developed multiphysic multiscale framework allows deeper insights into the underlying mechanisms during CPB on a patient-specific basis.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Hemodynamics , Models, Biological , Aorta, Thoracic/physiology , Cerebrovascular Circulation , Homeostasis , Humans , Hydrodynamics , Patient-Specific Modeling
12.
Biomed Eng Online ; 15(Suppl 2): 136, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28155674

ABSTRACT

BACKGROUND: Implantation of a rotary blood pump (RBP) can cause non-physiological flow fields in the left ventricle (LV) which may trigger thrombosis. Different inflow cannula geometry can affect LV flow fields. The aim of this study was to determine the effect of inflow cannula geometry on intraventricular flow under full LV support in a patient specific model. METHODS: Computed tomography angiography imaging of the LV was performed on a RBP candidate to develop a patient-specific model. Five inflow cannulae were evaluated, which were modelled on those used clinically or under development. The inflow cannulae are described as a crown like tip, thin walled tubular tip, large filleted tip, trumpet like tip and an inferiorly flared cannula. Placement of the inflow cannula was at the LV apex with the central axis intersecting the centre of the mitral valve. Full support was simulated by prescribing 5 l/min across the mitral valve. Thrombus risk was evaluated by identifying regions of stagnation. Rate of LV washout was assessed using a volume of fluid model. Relative haemolysis index and blood residence time was calculated using an Eulerian approach. RESULTS: The inferiorly flared inflow cannula had the lowest thrombus risk due to low stagnation volumes. All cannulae had similar rates of LV washout and blood residence time. The crown like tip and thin walled tubular tip resulted in relatively higher blood damage indices within the LV. CONCLUSION: Changes in intraventricular flow due to variances in cannula geometry resulted in different stagnation volumes. Cannula geometry does not appreciably affect LV washout rates and blood residence time. The patient specific, full support computational fluid dynamic model provided a repeatable platform to investigate the effects of inflow cannula geometry on intraventricular flow.


Subject(s)
Cannula , Heart Ventricles/physiopathology , Thrombosis/physiopathology , Computer Simulation , Heart Failure/physiopathology , Hemolysis , Humans , Mitral Valve/diagnostic imaging , Models, Cardiovascular , Risk , Shear Strength , Stress, Mechanical , Thrombosis/diagnostic imaging , Tomography, X-Ray Computed
13.
Int J Numer Method Biomed Eng ; 32(4): e02748, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26420012

ABSTRACT

Ischemic stroke, caused by embolism of cerebral vessels, inflicts high morbidity and mortality. Endovascular aspiration of the blood clot is an interventional technique for the recanalization of the occluded arteries. However, the hemodynamics in the Circle of Willis (CoW) are not completely understood, which results in medical misjudgment and complications during surgeries. In this study we establish a multiscale description of cerebral hemodynamics during aspiration thrombectomy. First, the CoW is modeled as a 1D pipe network on the basis of computed tomography angiography (CTA) scans. Afterwards, a vascular occlusion is placed in the middle cerebral artery and the relevant section of the CoW is transferred to a 3D computational fluid dynamic (CFD) domain. A suction catheter in different positions is included in the CFD simulations. The boundary conditions of the 3D domain are taken from the 1D domain to ensure system coupling. A Eulerian-Eulerian multiphase simulation describes the process of thrombus aspiration. The physiological blood flow in the 1D and 3D domains is validated with literature data. Further on, it is proved that domain reduction and pressure coupling at the boundaries are an appropriate method to reduce computational costs. Future work will apply the developed framework to various clinical questions.


Subject(s)
Endovascular Procedures , Hemodynamics , Numerical Analysis, Computer-Assisted , Stroke/physiopathology , Stroke/surgery , Humans , Models, Cardiovascular , Regional Blood Flow , Reproducibility of Results , Suction , Thrombosis/pathology , Vascular Resistance
15.
Cardiovasc Eng Technol ; 6(3): 340-51, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26577365

ABSTRACT

Computational fluid dynamics (CFD) is used to simulate blood flow inside the fiber bundles of oxygenators. The results are interpreted in terms of flow distribution, e.g., stagnation and shunt areas. However, experimental measurements that provide such information on the local flow between the fibers are missing. A transparent model of an oxygenator was built to perform particle image velocimetry (PIV), to perform the experimental validation. The similitude theory was used to adjust the size of the PIV model to the minimal resolution of the PIV system used (scale factor 3.3). A standard flow of 80 mL/min was simulated with CFD for the real oxygenator and the equivalent flow of 711 mL/min, according to the similitude theory, was investigated with PIV. CFD predicts the global size of stagnation and shunt areas well, but underestimates the streamline length and changes in velocities due to the meandering flow around the real fibers in the PIV model. Symmetrical CFD simulation cannot consider asymmetries in the flow, due to manufacturing-related asymmetries in the fiber bundle. PIV could be useful for validation of CFD simulations; measurement quality however must be improved for a quantitative validation of CFD results and the investigation of flow effects such as tortuosity and anisotropic flow behavior.


Subject(s)
Hemodynamics , Hydrodynamics , Oxygenators, Membrane , Rheology/methods , Computer Simulation , Equipment Design , Models, Cardiovascular
16.
Int J Artif Organs ; 38(10): 548-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26541279

ABSTRACT

PURPOSE: Implanting the largest valved conduit possible - oversizing - to reconstruct an absent connection from the right ventricle to the pulmonary artery in certain types of congenital heart defects has been suggested as a compensating measure for somatic outgrowth of the patient. However, one effect that has not been investigated yet is the hemodynamic consequence. For this purpose, virtual implantation and flow simulations were conducted in this study. METHODS: To isolate the effects of conduit oversizing on the hemodynamics observed after conduit implantation and outgrowth, calculated wall shear stresses (WSS) of image-based computational fluid dynamic (CFD) simulations were used as indicators. Three different sizes of valved conduits (20 mm, 22 mm, and 24 mm), including the largest possible conduit size, virtually implanted in a child-sized healthy pulmonary artery and the corresponding adult-sized model were investigated. RESULTS: The child and adult models show a decrease of the mean WSS (approx. 26%) in the whole domain with an increase of the conduit size. When looking at the mean WSS at the anastomosis, for the child model the WSS is significantly increased (approx. 40%) when oversizing (Z-score +3.21). In contrast, the stresses are decreased for the adult model (34%) when using the largest conduit (Z-score +0.25). CONCLUSIONS: Based on the results of this study, it must be considered that choosing a prosthesis size that will lead to high WSS and an associated intimal reaction, possibly leading to stenosis, can defeat the benefit of having a nominally larger orifice area directly after implantation.


Subject(s)
Heart Defects, Congenital/surgery , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis , Hemodynamics/physiology , Models, Cardiovascular , Pulmonary Valve/surgery , Adolescent , Bioprosthesis , Child , Child, Preschool , Female , Heart Defects, Congenital/physiopathology , Humans , Male
17.
J Biomech ; 48(10): 2005-11, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25907548

ABSTRACT

The cardiopulmonary bypass is related to complications like stroke or hypoxia. The cannula jet is suspected to be one reason for these complications, due to the sandblast effect on the vessel wall. Several in silico and in vitro studies investigated the underlying mechanisms, but the applied experimental flow measurement techniques were not able to address the highly three-dimensional flow character with a satisfying resolution. In this work in vitro flow measurements in a cannulated and a non-cannulated aortic silicone model are presented. Stereo particle image velocimetry measurements in multiple planes were carried out. By assembling the data of the different measurement planes, quasi 3D velocity fields with a resolution of~1.5×1.5×2.5 mm(3) were obtained. The resulting velocity fields have been compared regarding magnitude, streamlines and vorticity. The presented method shows to be a suitable in vitro technique to measure and address the three-dimensional aortic CPB cannula flow with a high temporal and spatial resolution.


Subject(s)
Aorta, Thoracic/physiology , Cardiopulmonary Bypass , Hemodynamics , Imaging, Three-Dimensional , Rheology , Blood Flow Velocity , Catheterization
18.
Artif Organs ; 38(9): 783-90, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25234761

ABSTRACT

It has been shown that left ventricular assist devices (LVADs) increase the survival rate in end-stage heart failure patients. However, there is an ongoing demand for an increased quality of life, fewer adverse events, and more physiological devices. These challenges necessitate new approaches during the design process. In this study, computational fluid dynamics (CFD), lumped parameter (LP) modeling, mock circulatory loops (MCLs), and particle image velocimetry (PIV) are combined to develop a numerical Pump Testing Framework (nPTF) capable of analyzing local flow patterns and the systemic response of LVADs. The nPTF was created by connecting a CFD model of the aortic arch, including an LVAD outflow graft to an LP model of the circulatory system. Based on the same geometry, a three-dimensional silicone model was crafted using rapid prototyping and connected to an MCL. PIV studies of this setup were performed to validate the local flow fields (PIV) and the systemic response (MCL) of the nPTF. After validation, different outflow graft positions were compared using the nPTF. Both the numerical and the experimental setup were able to generate physiological responses by adjusting resistances and systemic compliance, with mean aortic pressures of 72.2-132.6 mm Hg for rotational speeds of 2200-3050 rpm. During LVAD support, an average flow to the distal branches (cerebral and subclavian) of 24% was found in the experiments and the nPTF. The flow fields from PIV and CFD were in good agreement. Numerical and experimental tools were combined to develop and validate the nPTF, which can be used to analyze local flow fields and the systemic response of LVADs during the design process. This allows analysis of physiological control parameters at early development stages and may, therefore, help to improve patient outcomes.


Subject(s)
Computer Simulation , Heart-Assist Devices , Hemodynamics , Models, Cardiovascular , Aorta, Thoracic/anatomy & histology , Aorta, Thoracic/physiology , Blood Flow Velocity , Blood Pressure , Equipment Design , Humans , Hydrodynamics , Rheology
19.
Biomed Tech (Berl) ; 59(6): 471-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25029079

ABSTRACT

Retinal artery occlusion (RAO) is a common ocular vascular occlusive disorder that may lead to partial or complete retinal ischemia with sudden visual deterioration and visual field defects. Although RAO has been investigated since 1859, the main mechanism is still not fully understood. While hypoperfusion of the ophthalmic artery (OA) due to severe stenosis of the internal carotid artery might lead to RAO, emboli are assumed to be the main reason. Intra-arterial thrombolysis is not a sufficient treatment for RAO, and current research is mainly focused on risk factors. In this study, a computational fluid dynamic model is presented to analyse flow conditions and clot behaviour at the junction of the internal carotid artery and OA based on a realistic geometry from a RAO patient. Clot diameters varied between 5 and 200 µm, and the probability of clots reaching the OA or being washed into the brain was analysed. Results show sufficient blood flow and perfusion pressure at the end of OA. The probability that clots from the main blood flow will to be washed into the brain is 7.32 ± 1.08%. A wall shear stress hotspot is observed at the curvature proximal to the internal carotid artery/OA junction. Clots released from this hotspot have a higher probability of causing RAO. The occurrence of such patient-specific pathophysiologies will have to be considered in the future.


Subject(s)
Blood Flow Velocity , Carotid Artery, Internal/physiopathology , Models, Cardiovascular , Ophthalmic Artery/physiopathology , Retinal Artery Occlusion/physiopathology , Retinal Artery/physiopathology , Blood Coagulation , Blood Pressure , Carotid Artery, Internal/pathology , Computer Simulation , Elastic Modulus , Humans , Ophthalmic Artery/pathology , Retinal Artery/pathology , Retinal Artery Occlusion/pathology , Shear Strength
20.
Ann Biomed Eng ; 42(10): 2048-57, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25015131

ABSTRACT

Cardiopulmonary bypass is a well-established technique during open heart surgeries. However, neurological complications due to insufficient cerebral oxygen supply occur and the severe consequences must not be neglected. Recent computational fluid dynamics (CFD) studies showed that during axillary cannulation the cerebral perfusion is strongly affected by the distance between the cannula tip and the vertebral artery branch. In this study we use two modifications of the cannula design to analyze the flow characteristics by means of CFD and experimental validation with particle image velocimetry (PIV). One approach applies a spin to the blood stream with a helical surface in the cannula cross section. Another approach uses radial bores in a constricted cannula tip to split the outflow jet. The additional helicity improves the perfusion of the cerebral vessels and suppresses the blood suction in the right vertebral artery observed with a standard cannula. The cannula with a helix throughout the entire length changes the blood flow from 2124 to 32 mL/min in comparison with an unmodified design and has the lowest prediction of blood damage. Separating the blood stream does not deliver satisfying results. The PIV measurements validate the simulations and correspond with the velocity distribution as well as vortex locations.


Subject(s)
Cardiopulmonary Bypass/instrumentation , Catheters , Adult , Carotid Arteries/physiology , Equipment Design , Hemolysis , Humans , Hydrodynamics , Male , Models, Theoretical , Vertebral Artery/physiology
SELECTION OF CITATIONS
SEARCH DETAIL