Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet ; 91(3): 212-21, 2000 Mar 20.
Article in English | MEDLINE | ID: mdl-10756346

ABSTRACT

Mutations in the gene for fibrillin-1 (FBN1) cause Marfan syndrome, a dominantly inherited disorder of connective tissue that primarily involves the cardiovascular, ocular, and skeletal systems. There is a remarkable degree of variability both within and between families with Marfan syndrome, and FBN1 mutations have also been found in a range of other related connective tissue disorders collectively termed type-1 fibrillinopathies. FBN1 mutations have been found in almost all of the 65 exons of the FBN1 gene and for the most part have been unique to one affected patient or family. Aside from the "hot spots" for the neonatal Marfan syndrome in exons 24-27 and 31-32, genotype-phenotype correlations have been slow to emerge. Here we present the results of temperature-gradient gel electrophoresis analysis of FBN1 exons 59-65. Six mutations were identified, only one of which had been previously reported. Two of the six mutations were found in patients with mild phenotypes. Taken together with other published reports, our results suggest that a sizable subset (ca. 40%) of mutations in this region is associated with mild phenotypes characterized by the lack of significant aortic pathology, compared with about 7% in the rest of the gene. In two cases, mutations affecting analogous positions within one of the 43 cbEGF modules of FBN1 are associated with mild phenotypes when found in one of the 6 C-terminal modules (encoded by exons 59-63), but are associated with classic or severe phenotypes when found in cbEGF modules elsewhere in the gene.


Subject(s)
Marfan Syndrome/genetics , Microfilament Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Exons , Female , Fibrillin-1 , Fibrillins , Genotype , Humans , Male , Mutation , Phenotype , Polymerase Chain Reaction , Protein Structure, Tertiary
2.
Clin Genet ; 55(2): 110-7, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10189088

ABSTRACT

The Marfan syndrome is an autosomal dominant heritable disorder of connective tissue that involves principally the skeletal, ocular, and cardiovascular systems. The most severe end of the phenotypic spectrum, the neonatal Marfan syndrome (nMFS), is characterized by pronounced atrioventricular valve dysfunction, and death often occurs within the first year of life due to congestive heart failure. Mutations in the gene coding for fibrillin-1, FBN1, are known to cause Marfan syndrome, and have been identified in almost all exons of FBN1. Here, we describe a novel mutation affecting the invariant + 1 position of the splice donor site in intron 31, associated with skipping of exon 31, in a patient with nMFS. Published reports of nMFS are reviewed and a strict definition for nMFS is suggested. If this definition is used, all nMFS mutations reported to date lie in one of two hot spots, comprising mainly missense mutations in FBN1 exons 24-27 and mutations causing skipping of exon 31 or 32.


Subject(s)
Exons , Marfan Syndrome/genetics , Microfilament Proteins/genetics , Mutation , Fibrillin-1 , Fibrillins , Humans , Infant, Newborn , Male
3.
Hum Genet ; 100(2): 195-200, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9254848

ABSTRACT

The Marfan syndrome, an autosomal dominant heritable disorder of connective tissue, is caused by mutations in the gene for fibrillin-1, FBN1. A novel FBN1 mutation was identified using temperature-gradient gel electrophoresis of a reverse-transcribed polymerase chain reaction product spanning exons 14 to 16. The mutation, G1760A, is predicted to result in the amino acid substitution C587Y and thus to disrupt one of the disulfide bonds of the calcium-binding epidermal growth factor-like module encoded by exon 14. C587Y was found to be a de novo mutation in a relatively mildly affected 15-year-old girl whose clinical phenotype was characterized mainly by ectopia lentis and thoracic scoliosis. Metabolic labeling of cultured dermal fibroblasts from the affected patient demonstrated delayed secretion of fibrillin with normal synthesis and no decrease in incorporation into the extracellular matrix compartment. Fibrillin immunostaining of confluent dermal fibroblast cultures revealed no visible difference between the patient's cells and control cells. Characterization of many different FBN1 mutations from different regions of the gene may provide a better understanding of clinical and biochemical genotype-phenotype relationships.


Subject(s)
Marfan Syndrome/genetics , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Mutation , Adolescent , Adult , Cysteine/genetics , Exons , Female , Fibrillin-1 , Fibrillins , Genetic Testing , Humans , Marfan Syndrome/etiology , Marfan Syndrome/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL