Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rep ; 76(4): 793-806, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38739359

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most difficult to treat tumors. The Src (sarcoma) inhibitor dasatinib (DASA) has shown promising efficacy in preclinical studies of PDAC. However, clinical confirmation could not be achieved. Overall, our aim was to deliver arguments for the possible reinitiating clinical testing of this compound in a biomarker-stratifying therapy trial for PDAC patients. We tested if the nanofunctionalization of DASA can increase the drug efficacy and whether certain Src members can function as clinical predictive biomarkers. METHODS: Methods include manufacturing of poly(vinyl alcohol) stabilized gold nanoparticles and their drug loading, dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Zeta potential measurement, sterile human cell culture, cell growth quantification, accessing and evaluating transcriptome and clinical data from molecular tumor dataset TCGA, as well as various statistical analyses. RESULTS: We generated homo-dispersed nanofunctionalized DASA as an AuNP@PVA-DASA conjugate. The composite did not enhance the anti-growth effect of DASA on PDAC cell lines. The cell model with high LYN expression showed the strongest response to the therapy. We confirm deregulated Src kinetome activity as a prevalent feature of PDAC by revealing mRNA levels associated with higher malignancy grade of tumors. BLK (B lymphocyte kinase) expression predicts shorter overall survival of diabetic PDAC patients. CONCLUSIONS: Nanofunctionalization of DASA needs further improvement to overcome the therapy resistance of PDAC. LYN mRNA is augmented in tumors with higher malignancy and can serve as a predictive biomarker for the therapy resistance of PDAC cells against DASA. Studying the biological roles of BLK might help to identify underlying molecular mechanisms associated with PDAC in diabetic patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Dasatinib , Drug Resistance, Neoplasm , Metal Nanoparticles , Pancreatic Neoplasms , src-Family Kinases , Dasatinib/pharmacology , Dasatinib/administration & dosage , Humans , src-Family Kinases/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Gold/chemistry , Cell Proliferation/drug effects
2.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628289

ABSTRACT

The failure of a long-lasting curative therapeutic benefit of currently applied chemotherapies against malignant cancers is suggested to be caused by the ineffectiveness of such interventions on cancer stem cells (CSCs). CD133/AC133 is a cell surface protein previously shown to have potential to identify CSCs in various tumors, including brain tumors. Moreover, an increase in the rate of cellular metabolism of glutamine and glucose are contributors to the fast cellular proliferation of some high-grade malignancies. Inhibition of glutaminolysis by utilizing pharmacological inhibitors of the enzyme glutaminase 1 (GLS1) can be an effective anti-CSC strategy. In this study, the clinical-stage GLS1 inhibitor Telaglenastat (CB-839) was loaded into PEGylated gold nanoparticles equipped with the covalently conjugated CD133 aptamer (Au-PEG-CD133-CB-839) and exposed to a collection of CD133-positive brain tumor models in vitro. Our results show that Au-PEG-CD133-CB-839 significantly decreased the viability of CD133-postive cancer cells in a dose-dependent manner, which was higher as compared to the effects of treatment of the cells with the individual components of the assembled nanodrug. Interestingly, the treatment effect was observed in glioblastoma stem cells modeling different transcriptomic subtypes of the disease. The presented platform is the fundament for subsequent target specificity characterization and in vivo application.


Subject(s)
Brain Neoplasms , Metal Nanoparticles , Humans , AC133 Antigen/metabolism , Benzeneacetamides , Brain Neoplasms/metabolism , Enzyme Inhibitors/pharmacology , Gold/pharmacology , Neoplastic Stem Cells/metabolism , Thiadiazoles
SELECTION OF CITATIONS
SEARCH DETAIL