Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nature ; 627(8002): 204-211, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383787

ABSTRACT

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.


Subject(s)
Nuclear Proteins , Transcription Factors , Proteolysis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Nat Commun ; 14(1): 8121, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065954

ABSTRACT

Ribosome biogenesis is a multi-step process, in which a network of trans-acting factors ensures the coordinated assembly of pre-ribosomal particles in order to generate functional ribosomes. Ribosome biogenesis is tightly coordinated with cell proliferation and its perturbation activates a p53-dependent cell-cycle checkpoint. How p53-independent signalling networks connect impaired ribosome biogenesis to the cell-cycle machinery has remained largely enigmatic. We demonstrate that inactivation of the nucleolar SUMO isopeptidases SENP3 and SENP5 disturbs distinct steps of 40S and 60S ribosomal subunit assembly pathways, thereby triggering the canonical p53-dependent impaired ribosome biogenesis checkpoint. However, inactivation of SENP3 or SENP5 also induces a p53-independent checkpoint that converges on the specific downregulation of the key cell-cycle regulator CDK6. We further reveal that impaired ribosome biogenesis generally triggers the downregulation of CDK6, independent of the cellular p53 status. Altogether, these data define the role of SUMO signalling in ribosome biogenesis and unveil a p53-independent checkpoint of impaired ribosome biogenesis.


Subject(s)
Cysteine Endopeptidases , Ribosomes , Tumor Suppressor Protein p53 , Cell Nucleolus/metabolism , Cell Proliferation , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Humans , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism
3.
Commun Biol ; 6(1): 872, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620393

ABSTRACT

Human WIPI ß-propellers function as PI3P effectors in autophagy, with WIPI4 and WIPI3 being able to link autophagy control by AMPK and TORC1 to the formation of autophagosomes. WIPI1, instead, assists WIPI2 in efficiently recruiting the ATG16L1 complex at the nascent autophagosome, which in turn promotes lipidation of LC3/GABARAP and autophagosome maturation. However, the specific role of WIPI1 and its regulation are unknown. Here, we discovered the ABL-ERK-MYC signalling axis controlling WIPI1. As a result of this signalling, MYC binds to the WIPI1 promoter and represses WIPI1 gene expression. When ABL-ERK-MYC signalling is counteracted, increased WIPI1 gene expression enhances the formation of autophagic membranes capable of migrating through tunnelling nanotubes to neighbouring cells with low autophagic activity. ABL-regulated WIPI1 function is relevant to lifespan control, as ABL deficiency in C. elegans increased gene expression of the WIPI1 orthologue ATG-18 and prolonged lifespan in a manner dependent on ATG-18. We propose that WIPI1 acts as an enhancer of autophagy that is physiologically relevant for regulating the level of autophagic activity over the lifespan.


Subject(s)
Longevity , Proto-Oncogene Proteins c-abl , Animals , Humans , Autophagosomes , Autophagy/genetics , Caenorhabditis elegans/genetics , Longevity/genetics , Macroautophagy , Proto-Oncogene Proteins c-abl/genetics
4.
Bioinformatics ; 39(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37481709

ABSTRACT

SUMMARY: CRISPR screens are increasingly performed to associate genotypes with genotypes. So far, however, their analysis required specialized computational knowledge to transform high-throughput next-generation sequencing (NGS) data into sequence formats amenable for downstream analysis. We developed ReCo, a stand-alone and user-friendly analytics tool for generating read-count tables of single and combinatorial CRISPR library and screen-based NGS data. Together with cutadapt and bowtie2 for rapid sequence trimming and alignment, ReCo enables the automated generation of read count tables from staggered NGS reads for the downstream identification of gRNA-induced phenotypes. AVAILABILITY AND IMPLEMENTATION: ReCo is published under the MIT license and available at: https://github.com/KaulichLab/ReCo.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Software , High-Throughput Nucleotide Sequencing , Gene Library , Sequence Analysis, DNA
5.
Autophagy ; 19(11): 2982-2996, 2023 11.
Article in English | MEDLINE | ID: mdl-37439113

ABSTRACT

The selective autophagic degradation of mitochondria via mitophagy is essential for preserving mitochondrial homeostasis and, thereby, disease maintenance and progression in acute myeloid leukemia (AML). Mitophagy is orchestrated by a variety of mitophagy receptors whose interplay is not well understood. Here, we established a pairwise multiplexed CRISPR screen targeting mitophagy receptors to elucidate redundancies and gain a deeper understanding of the functional interactome governing mitophagy in AML. We identified OPTN (optineurin) as sole non-redundant mitophagy receptor and characterized its unique role in AML. Knockdown and overexpression experiments demonstrated that OPTN expression is rate-limiting for AML cell proliferation. In a MN1-driven murine transplantation model, loss of OPTN prolonged overall median survival by 7 days (+21%). Mechanistically, we found broadly impaired mitochondrial respiration and function with increased mitochondrial ROS, that most likely caused the proliferation defect. Our results decipher the intertwined network of mitophagy receptors in AML for both ubiquitin-dependent and receptor-mediated mitophagy, identify OPTN as a non-redundant tool to study mitophagy in the context of leukemia and suggest OPTN inhibition as an attractive therapeutic strategy.Abbreviations: AML: acute myeloid leukemia; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; CTRL: control; DFP: deferiprone; GI: genetic interaction; KD: knockdown; KO: knockout; ldMBM, lineage-depleted murine bone marrow; LFC: log2 fold change; LIR: LC3-interacting region; LSC: leukemic stem cell; MAGeCK: Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout; MDIVI-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MOM: mitochondrial outer membrane; NAC: N-acetyl-L-cysteine; OA: oligomycin-antimycin A; OCR: oxygen consumption rate; OE: overexpression; OPTN: optineurin; PINK1: PTEN induced putative kinase 1; ROS: reactive oxygen species; SEM: standard error of the mean; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; UBD: ubiquitin-binding domain; WT: wild type.


Subject(s)
Leukemia, Myeloid, Acute , Mitophagy , Animals , Mice , Autophagy , Mitophagy/genetics , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins , Humans
6.
Sci Rep ; 13(1): 7405, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37149686

ABSTRACT

CRISPR-based gene perturbation enables unbiased investigations of single and combinatorial genotype-to-phenotype associations. In light of efforts to map combinatorial gene dependencies at scale, choosing an efficient and robust CRISPR-associated (Cas) nuclease is of utmost importance. Even though SpCas9 and AsCas12a are widely used for single, combinatorial, and orthogonal screenings, side-by-side comparisons remain sparse. Here, we systematically compared combinatorial SpCas9, AsCas12a, and CHyMErA in hTERT-immortalized retinal pigment epithelial cells and extracted performance-critical parameters for combinatorial and orthogonal CRISPR screens. Our analyses identified SpCas9 to be superior to enhanced and optimized AsCas12a, with CHyMErA being largely inactive in the tested conditions. Since AsCas12a contains RNA processing activity, we used arrayed dual-gRNAs to improve AsCas12a and CHyMErA applications. While this negatively influenced the effect size range of combinatorial AsCas12a applications, it enhanced the performance of CHyMErA. This improved performance, however, was limited to AsCas12a dual-gRNAs, as SpCas9 gRNAs remained largely inactive. To avoid the use of hybrid gRNAs for orthogonal applications, we engineered the multiplex SpCas9-enAsCas12a approach (multiSPAS) that avoids RNA processing for efficient orthogonal gene editing.


Subject(s)
Benchmarking , CRISPR-Cas Systems , Gene Editing , Endonucleases/genetics
7.
EMBO J ; 42(13): e112799, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37102372

ABSTRACT

Selective autophagy of mitochondria, mitophagy, is linked to mitochondrial quality control and as such is critical to a healthy organism. We have used a CRISPR/Cas9 approach to screen human E3 ubiquitin ligases for influence on mitophagy under both basal cell culture conditions and upon acute mitochondrial depolarization. We identify two cullin-RING ligase substrate receptors, VHL and FBXL4, as the most profound negative regulators of basal mitophagy. We show that these converge, albeit via different mechanisms, on control of the mitophagy adaptors BNIP3 and BNIP3L/NIX. FBXL4 restricts NIX and BNIP3 levels via direct interaction and protein destabilization, while VHL acts through suppression of HIF1α-mediated transcription of BNIP3 and NIX. Depletion of NIX but not BNIP3 is sufficient to restore mitophagy levels. Our study contributes to an understanding of the aetiology of early-onset mitochondrial encephalomyopathy that is supported by analysis of a disease-associated mutation. We further show that the compound MLN4924, which globally interferes with cullin-RING ligase activity, is a strong inducer of mitophagy, thus providing a research tool in this context and a candidate therapeutic agent for conditions linked to mitochondrial dysfunction.


Subject(s)
Mitophagy , Ubiquitin , Humans , Mitophagy/physiology , Ubiquitin/metabolism , Cullin Proteins/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Autophagy/physiology
8.
Cell Rep ; 41(10): 111653, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476874

ABSTRACT

The endosomal-lysosomal system is a series of organelles in the endocytic pathway that executes trafficking and degradation of proteins and lipids and mediates the internalization of nutrients and growth factors to ensure cell survival, growth, and differentiation. Here, we reveal regulatory, non-proteolytic ubiquitin signals in this complex system that are controlled by the enigmatic deubiquitinase USP32. Knockout (KO) of USP32 in primary hTERT-RPE1 cells results among others in hyperubiquitination of the Ragulator complex subunit LAMTOR1. Accumulation of LAMTOR1 ubiquitination impairs its interaction with the vacuolar H+-ATPase, reduces Ragulator function, and ultimately limits mTORC1 recruitment. Consistently, in USP32 KO cells, less mTOR kinase localizes to lysosomes, mTORC1 activity is decreased, and autophagy is induced. Furthermore, we demonstrate that depletion of USP32 homolog CYK-3 in Caenorhabditis elegans results in mTOR inhibition and autophagy induction. In summary, we identify a control mechanism of the mTORC1 activation cascade at lysosomes via USP32-regulated LAMTOR1 ubiquitination.


Subject(s)
Autophagy , Mechanistic Target of Rapamycin Complex 1
9.
Nat Commun ; 13(1): 5164, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056001

ABSTRACT

Mitophagy is essential to maintain mitochondrial function and prevent diseases. It activates upon mitochondria depolarization, which causes PINK1 stabilization on the mitochondrial outer membrane. Strikingly, a number of conditions, including mitochondrial protein misfolding, can induce mitophagy without a loss in membrane potential. The underlying molecular details remain unclear. Here, we report that a loss of mitochondrial protein import, mediated by the pre-sequence translocase-associated motor complex PAM, is sufficient to induce mitophagy in polarized mitochondria. A genome-wide CRISPR/Cas9 screen for mitophagy inducers identifies components of the PAM complex. Protein import defects are able to induce mitophagy without a need for depolarization. Upon mitochondrial protein misfolding, PAM dissociates from the import machinery resulting in decreased protein import and mitophagy induction. Our findings extend the current mitophagy model to explain mitophagy induction upon conditions that do not affect membrane polarization, such as mitochondrial protein misfolding.


Subject(s)
Mitophagy , Protein Kinases , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Nat Metab ; 4(6): 672-682, 2022 06.
Article in English | MEDLINE | ID: mdl-35726026

ABSTRACT

Angiogenesis, the process by which endothelial cells (ECs) form new blood vessels from existing ones, is intimately linked to the tissue's metabolic milieu and often occurs at nutrient-deficient sites. However, ECs rely on sufficient metabolic resources to support growth and proliferation. How endothelial nutrient acquisition and usage are regulated is unknown. Here we show that these processes are instructed by Yes-associated protein 1 (YAP)/WW domain-containing transcription regulator 1 (WWTR1/TAZ)-transcriptional enhanced associate domain (TEAD): a transcriptional module whose function is highly responsive to changes in the tissue environment. ECs lacking YAP/TAZ or their transcriptional partners, TEAD1, 2 and 4 fail to divide, resulting in stunted vascular growth in mice. Conversely, activation of TAZ, the more abundant paralogue in ECs, boosts proliferation, leading to vascular hyperplasia. We find that YAP/TAZ promote angiogenesis by fuelling nutrient-dependent mTORC1 signalling. By orchestrating the transcription of a repertoire of cell-surface transporters, including the large neutral amino acid transporter SLC7A5, YAP/TAZ-TEAD stimulate the import of amino acids and other essential nutrients, thereby enabling mTORC1 activation. Dissociating mTORC1 from these nutrient inputs-elicited by the loss of Rag GTPases-inhibits mTORC1 activity and prevents YAP/TAZ-dependent vascular growth. Together, these findings define a pivotal role for YAP/TAZ-TEAD in controlling endothelial mTORC1 and illustrate the essentiality of coordinated nutrient fluxes in the vasculature.


Subject(s)
Endothelial Cells , Trans-Activators , Acyltransferases/metabolism , Animals , Endothelial Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Nutrients , TEA Domain Transcription Factors/metabolism , Trans-Activators/metabolism , YAP-Signaling Proteins/metabolism
11.
Cell Death Dis ; 13(4): 386, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35444189

ABSTRACT

Caspase-2 represents an evolutionary conserved caspase, which plays a role in genotoxic stress-induced apoptosis, ageing-related metabolic changes, and in deleting aneuploid cells in tumors. Genetic deletion of caspase-2 leads to increased tumor susceptibility in vivo. The exact downstream signaling mechanism by which caspase-2 accomplishes its specific tumor suppressor functions is not clear. Caspase-2, uniquely among caspases, resides in the nucleus and other cellular compartments. In this study, we identify a nuclear caspase-2 specific substrate, p54nrb, which is selectively cleaved by caspase-2 at D422, leading to disruption of the C-terminal site, the putative DNA binding region of the protein. P54nrb is an RNA and DNA binding protein, which plays a role in RNA editing, transport, and transcriptional regulation of genes. Overexpression of p54nrb is observed in several human tumor types, such as cervix adenocarcinoma, melanoma, and colon carcinoma. In contrast, the loss of p54nrb in tumor cell lines leads to increased cell death susceptibility and striking decrease in tumorigenic potential. By employing high resolution quantitative proteomics, we demonstrate that the loss/cleavage of p54nrb results in altered expression of oncogenic genes, among which the downregulation of the tumorigenic protease cathepsin-Z and the anti-apoptotic gelsolin can be detected universally across three tumor cell types, including adenocarcinoma, melanoma and colon carcinoma. Finally, we demonstrate that p54nrb interacts with cathepsin-Z and gelsolin DNA, but not RNA. Taken together, this study uncovers a so far not understood mechanism of caspase-2 tumor suppressor function in human tumor cells.


Subject(s)
Adenocarcinoma , Carcinoma , DNA-Binding Proteins/metabolism , Melanoma , RNA-Binding Proteins/metabolism , Apoptosis/genetics , Caspase 2/genetics , Caspase 2/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Caspases/metabolism , Cathepsins/metabolism , Cell Death , DNA , Gelsolin/metabolism , Humans , RNA/metabolism , Transcription Factors/metabolism
12.
Cancers (Basel) ; 13(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885250

ABSTRACT

Autophagy is an important survival mechanism that allows recycling of nutrients and removal of damaged organelles and has been shown to contribute to the proliferation of acute myeloid leukemia (AML) cells. However, little is known about the mechanism by which autophagy- dependent AML cells can overcome dysfunctional autophagy. In our study we identified autophagy related protein 3 (ATG3) as a crucial autophagy gene for AML cell proliferation by conducting a CRISPR/Cas9 dropout screen with a library targeting around 200 autophagy-related genes. shRNA-mediated loss of ATG3 impaired autophagy function in AML cells and increased their mitochondrial activity and energy metabolism, as shown by elevated mitochondrial ROS generation and mitochondrial respiration. Using tracer-based NMR metabolomics analysis we further demonstrate that the loss of ATG3 resulted in an upregulation of glycolysis, lactate production, and oxidative phosphorylation. Additionally, loss of ATG3 strongly sensitized AML cells to the inhibition of mitochondrial metabolism. These findings highlight the metabolic vulnerabilities that AML cells acquire from autophagy inhibition and support further exploration of combination therapies targeting autophagy and mitochondrial metabolism in AML.

13.
Cell Death Dis ; 12(11): 969, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671021

ABSTRACT

Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.


Subject(s)
Immunosuppression Therapy , Interleukin-6/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Neoplasms/immunology , Cell Differentiation/immunology , Cell Line, Tumor , Cell Survival , Dendritic Cells/metabolism , Humans , Interleukin-12/metabolism , Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Models, Biological , Monocytes/metabolism , Neoplasms/pathology , RNA, Small Interfering/metabolism , Th1 Cells/immunology
14.
Nucleic Acids Res ; 49(18): 10397-10418, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34508352

ABSTRACT

Understanding how epigenetic variation in non-coding regions is involved in distal gene-expression regulation is an important problem. Regulatory regions can be associated to genes using large-scale datasets of epigenetic and expression data. However, for regions of complex epigenomic signals and enhancers that regulate many genes, it is difficult to understand these associations. We present StitchIt, an approach to dissect epigenetic variation in a gene-specific manner for the detection of regulatory elements (REMs) without relying on peak calls in individual samples. StitchIt segments epigenetic signal tracks over many samples to generate the location and the target genes of a REM simultaneously. We show that this approach leads to a more accurate and refined REM detection compared to standard methods even on heterogeneous datasets, which are challenging to model. Also, StitchIt REMs are highly enriched in experimentally determined chromatin interactions and expression quantitative trait loci. We validated several newly predicted REMs using CRISPR-Cas9 experiments, thereby demonstrating the reliability of StitchIt. StitchIt is able to dissect regulation in superenhancers and predicts thousands of putative REMs that go unnoticed using peak-based approaches suggesting that a large part of the regulome might be uncharted water.


Subject(s)
Chromatin/metabolism , Data Analysis , Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans
15.
Sci Rep ; 11(1): 14736, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282211

ABSTRACT

During early G1 phase, Rb is exclusively mono-phosphorylated by cyclin D:Cdk4/6, generating 14 different isoforms with specific binding patterns to E2Fs and other cellular protein targets. While mono-phosphorylated Rb is dispensable for early G1 phase progression, interfering with cyclin D:Cdk4/6 kinase activity prevents G1 phase progression, questioning the role of cyclin D:Cdk4/6 in Rb inactivation. To dissect the molecular functions of cyclin D:Cdk4/6 during cell cycle entry, we generated a single cell reporter for Cdk2 activation, RB inactivation and cell cycle entry by CRISPR/Cas9 tagging endogenous p27 with mCherry. Through single cell tracing of Cdk4i cells, we identified a time-sensitive early G1 phase specific Cdk4/6-dependent phosphorylation gradient that regulates cell cycle entry timing and resides between serum-sensing and cyclin E:Cdk2 activation. To reveal the substrate identity of the Cdk4/6 phosphorylation gradient, we performed whole proteomic and phospho-proteomic mass spectrometry, and identified 147 proteins and 82 phospho-peptides that significantly changed due to Cdk4 inhibition in early G1 phase. In summary, we identified novel (non-Rb) cyclin D:Cdk4/6 substrates that connects early G1 phase functions with cyclin E:Cdk2 activation and Rb inactivation by hyper-phosphorylation.


Subject(s)
Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , G1 Phase/physiology , Cell Division , Cells, Cultured , Cyclin D/metabolism , Cyclin E/metabolism , Humans , Oncogene Proteins/metabolism , Phosphorylation , Proteome/metabolism , Proto-Oncogene Proteins/metabolism , Retinoblastoma Protein/metabolism
16.
Nucleic Acids Res ; 49(10): 5684-5704, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33956155

ABSTRACT

Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.


Subject(s)
Autophagy/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Knockout Techniques/methods , Gene Regulatory Networks/genetics , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Carcinoma, Squamous Cell/mortality , Cell Proliferation/genetics , Cell Survival/genetics , Databases, Genetic , Gene Library , Genes, Essential , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Kaplan-Meier Estimate , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/mortality , Models, Genetic , RNA, Guide, Kinetoplastida , RNA-Seq , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
17.
Elife ; 102021 05 14.
Article in English | MEDLINE | ID: mdl-33988507

ABSTRACT

The human kinome comprises 538 kinases playing essential functions by catalyzing protein phosphorylation. Annotation of subcellular distribution of the kinome greatly facilitates investigation of normal and disease mechanisms. Here, we present Kinome Atlas (KA), an image-based map of the kinome annotated to 10 cellular compartments. 456 epitope-tagged kinases, representing 85% of the human kinome, were expressed in HeLa cells and imaged by immunofluorescent microscopy under a similar condition. KA revealed kinase family-enriched subcellular localizations and discovered a collection of new kinase localizations at mitochondria, plasma membrane, extracellular space, and other structures. Furthermore, KA demonstrated the role of liquid-liquid phase separation in formation of kinase condensates. Identification of MOK as a mitochondrial kinase revealed its function in cristae dynamics, respiration, and oxidative stress response. Although limited by possible mislocalization due to overexpression or epitope tagging, this subcellular map of the kinome can be used to refine regulatory mechanisms involving protein phosphorylation.


Subject(s)
Mitochondria/enzymology , Protein Kinases , Subcellular Fractions/enzymology , Epitopes , HeLa Cells , Humans , Microscopy, Fluorescence , Organelles , Phosphorylation
18.
Nat Cell Biol ; 23(4): 413-423, 2021 04.
Article in English | MEDLINE | ID: mdl-33795871

ABSTRACT

Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.


Subject(s)
Cell Proliferation/genetics , Endothelial Cells/metabolism , Forkhead Box Protein O1/genetics , Neovascularization, Physiologic/genetics , Animals , Gene Expression Regulation/genetics , Glutarates/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Metabolism/genetics , Mice , Proto-Oncogene Proteins c-akt , Signal Transduction/genetics , Valerates/metabolism
19.
Biol Chem ; 402(8): 973-982, 2021 07 27.
Article in English | MEDLINE | ID: mdl-33660495

ABSTRACT

Genome-wide CRISPR screens are becoming more widespread and allow the simultaneous interrogation of thousands of genomic regions. Although recent progress has been made in the analysis of CRISPR screens, it is still an open problem how to interpret CRISPR mutations in non-coding regions of the genome. Most of the tools concentrate on the interpretation of mutations introduced in gene coding regions. We introduce a computational pipeline that uses epigenomic information about regulatory elements for the interpretation of CRISPR mutations in non-coding regions. We illustrate our analysis protocol on the analysis of a genome-wide CRISPR screen in hTERT-RPE1 cells and reveal novel regulatory elements that mediate chemoresistance against doxorubicin in these cells. We infer links to established and to novel chemoresistance genes. Our analysis protocol is general and can be applied on any cell type and with different CRISPR enzymes.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genomics
20.
Cells ; 10(2)2021 01 28.
Article in English | MEDLINE | ID: mdl-33525637

ABSTRACT

Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation.


Subject(s)
Drug Resistance, Neoplasm/genetics , Genomics , Antineoplastic Agents/pharmacology , CRISPR-Cas Systems/genetics , Gene Targeting , Humans , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL
...