Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 234, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561674

ABSTRACT

Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits (structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Himalayas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.


Subject(s)
Parthenium hysterophorus , Plants , Chlorophyll A , Himalayas , Water , Plant Leaves
2.
Environ Sci Pollut Res Int ; 31(5): 7465-7480, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159189

ABSTRACT

The proliferation of wireless and other telecommunications equipment brought about by technological advances in the communication industry has substantially increased the radiofrequency radiation levels in the environment. The emphasis is, therefore, placed on investigating the potential impacts of radiofrequency radiation on biota. In this work, the impact of 2850 MHz electromagnetic field radiation (EMF-r) on early development, photosynthetic pigments, and the metabolic profile of two Brassica oleracea L. cultivars (red and green cabbage) was studied. On a daily basis for seven days, seedlings were exposed to homogeneous EMF-r for one, two, and four hours, and observations were carried out at 0-h, 1-h, and 24-h following the final dose. Irrespective of the duration of harvest, exposure to EMF-r resulted in a dose-dependent reduction in both root (from 6.3 cm to 4.0 cm in red; 6.1 cm to 3.8 cm in green) and shoot lengths (from 5.3 cm to â“3.1 cm in red; 5.1 cm to 3.1 cm in green), as well as a decrease in biomass (from 2.9 mg to â“1.1 mg in red; 2.5 to 0.9 mg in green) of the seedlings when compared to control samples. Likewise, the chlorophyll (from 6.09 to â“4.94 mg g-1 d.wt in red; 7.37 to 6.05 mg g-1 d.wt. in green) and carotenoid (from 1.49 to 1.19 mg g-1 d.wt. in red; 1.14 to 0.51 mg g-1 d.wt. in green) contents of both cultivars decreased significantly when compared to the control. Additionally, the contents of phenolic (28.99‒45.52 mg GAE g-1 in red; 25.49‒33.76 mg GAE g-1 in green), flavonoid (21.7‒31.8 mg QE g-1 in red; 12.1‒19.0 mg QE g-1 in green), and anthocyanin (28.8‒43.6 mg per 100 g d.wt. in red; 1.1‒2.6 mg per 100 g d.wt. in green) in both red and green cabbage increased with exposure duration. EMF-r produced oxidative stress in the exposed samples of both cabbage cultivars, as demonstrated by dose-dependent increases in the total antioxidant activity (1.33‒2.58 mM AAE in red; 1.29‒2.22 mM AAE in green), DPPH activity (12.96‒78.33% in red; 9.62‒67.73% in green), H2O2 content (20.0‒77.15 nM g-1 f.wt. in red; 14.28‒64.29 nM g-1 f.wt. in green), and MDA content (0.20‒0.61 nM g-1 f.wt. in red; 0.18‒0.51 nM g-1 f.wt. in green) compared to their control counterparts. The activity of antioxidant enzymes, i.e., superoxide dismutases (3.83‒8.10 EU mg-1 protein in red; 4.19‒7.35 EU mg-1 protein in green), catalases (1.81‒7.44 EU mg-1 protein in red; 1.04‒6.24 EU mg-1 protein in green), and guaiacol peroxidases (14.37‒47.85 EU mg-1 protein in red; 12.30‒42.79 EU mg-1 protein in green), increased significantly compared to their control counterparts. The number of polyphenols in unexposed and EMF-r exposed samples of red cabbage was significantly different. The study concludes that exposure to 2850 MHz EMF-r affects the early development of cabbage seedlings, modifies their photosynthetic pigments, alters polyphenol content, and impairs their oxidative metabolism.


Subject(s)
Antioxidants , Brassica , Antioxidants/metabolism , Electromagnetic Fields , Hydrogen Peroxide/metabolism , Brassica/metabolism , Catalase/metabolism , Polyphenols
3.
Plant Divers ; 45(5): 611-620, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37936811

ABSTRACT

Of the various strategies adopted by an invasive plant species for expanding its niche breadth, phenotypic differentiation (either due to plasticity and/or adaptive evolution) is proven to be the most successful. Lately, we studied the persistence of substantial morpho-functional variations within the individuals of alien invasive plant, Parthenium hysterophorus in Chandigarh, India, through field surveys. Based on observed differences, the individuals were categorized into two morphotypes, PA and PB. PA had higher leaf area, leaf biomass, and chlorophyll content as compared with PB. However, PB had a higher stem circumference, stem specific density, twig dry matter content, profuse branching, bigger canopy, and better reproductive output than PA. To substantiate the persistence of intraspecific variations in P. hysterophorus and to deduce the possible genesis of these variations, we propagated both the morphotypes under experimental conditions in winter and summer. Apart from the key morpho-functional differences observed during the field studies, protein and carbohydrate metabolism were studied in leaves and roots of the propagated plants. Differences in plant metabolism were observed only during the early growth period, whereas the morpho-functional traits varied in the mature flowering plants. The effect of growth season was highly significant on all the studied morpho-functional and biochemical parameters (p ≤ 0.05). Parent morphotypes (P) and interactions between morphotypes and seasons significantly affected several growth parameters (p ≤ 0.05). The analyses revealed that the contrasting growth conditions at the time of transplantation and early growth may regulate the phenotype of P. hysterophorus. The pattern of intraspecific variations observed during the study is justified to consider morphotype PA as winter biotype and morphotype PB as summer biotype of P. hysterophorus. The study points towards the role of plasticity or a combination of genetic and environmental (G × E) factors in producing the phenotypic variability observed in the population of P. hysterophorus.

4.
Plants (Basel) ; 12(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375954

ABSTRACT

Ageratum conyzoides L. (Billy goat weed; Asteraceae) is an annual herbaceous plant of American origin with a pantropical distribution. The plant has unique biological attributes and a raft of miscellaneous chemical compounds that render it a pharmacologically important herb. Despite its high medicinal value, the constant spread of the weed is noticeable and alarming. In many countries, the weed has severely invaded the natural, urban, and agroecosystems, thus presenting management challenges to natural resource professionals and farmers. Its interference with agricultural crops, grassland forbs, forest ground flora, and its ability to replace native plant species are of serious concern. Therefore, it is pertinent to monitor its continuous spread, its entry into new geographic regions, the extent of its impact, and the associated evolutionary changes. While management strategies should be improvised to control its spread and reduce its adverse impacts, the possible utilization of this noxious weed for pharmacological and agronomic purposes should also be explored. The objective of this review is to provide a detailed account of the global distribution, biological activities, ecological and environmental impacts, and strategies for the management of the agro-environmental weed A. conyzoides.

5.
Environ Monit Assess ; 195(6): 730, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231282

ABSTRACT

Climate change and anthropogenic pressures have resulted in a significant shift in the invasion susceptibility and frequency of non-native species in mountain ecosystems. Cirsium arvense (L.) Scop. (Family: Asteraceae) is an invasive species that spreads quickly in mountains, especially in the trans-Himalayan region of Ladakh. The current study used a trait-based approach to evaluate the impact of local habitat heterogeneity (soil physico-chemical properties) on C. arvense. Thirteen plant functional traits (root, shoot, leaf, and reproductive traits) of C. arvense were studied in three different habitat types (agricultural, marshy, and roadside). Functional trait variability in C. arvense was higher between, than within habitats (between different populations). All the functional traits interacted with habitat change, except for leaf count and seed mass. Soil properties strongly affect C. arvense's resource-use strategies across habitats. The plant adapted to a resource-poor environment (roadside habitat) by conserving resources and to a resource-rich environment (agricultural and marshy land habitat) by acquiring them. The ability of C. arvense to use resources differently reflects its persistence in introduced habitats. In summary, our study shows that C. arvense invades different habitats in introduced regions through trait adaptations and resource-use strategies in the trans-Himalayan region.


Subject(s)
Cirsium , Ecosystem , Environmental Monitoring , Plants , Soil
6.
Plants (Basel) ; 13(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38202376

ABSTRACT

Human-induced climate change modifies plant species distribution, reorganizing ecologically suitable habitats for invasive species. In this study, we identified the environmental factors that are important for the spread of Calyptocarpus vialis, an emerging invasive weed in the northwestern Indian Himalayan Region (IHR), along with possible habitats of the weed under current climatic scenarios and potential range expansion under several representative concentration pathways (RCPs) using MaxEnt niche modeling. The prediction had a high AUC (area under the curve) value of 0.894 ± 0.010 and a remarkable correlation between the test and expected omission rates. BIO15 (precipitation seasonality; 38.8%) and BIO1 (annual mean temperature; 35.7%) had the greatest impact on the probable distribution of C. vialis, followed by elevation (11.7%) and landcover (6.3%). The findings show that, unlike the current situation, "high" and "very high" suitability areas would rise while less-suited habitats would disappear. All RCPs (2.6, 4.5, 6.0, and 8.5) indicate the expansion of C. vialis in "high" suitability areas, but RCP 4.5 predicts contraction, and RCPs 2.6, 6.0, and 8.5 predict expansion in "very high" probability areas. The current distribution of C. vialis is 21.59% of the total area of the state, with "medium" to "high" invasion suitability, but under the RCP 8.5 scenario, it might grow by 10% by 2070. The study also reveals that C. vialis may expand its niche at both lower and higher elevations. This study clarifies how bioclimatic and topographic factors affect the dispersion of invasive species in the biodiverse IHR. Policymakers and land-use managers can utilize the data to monitor C. vialis hotspots and develop scientifically sound management methods.

7.
Ecotoxicol Environ Saf ; 229: 113080, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34929504

ABSTRACT

Rice (Oryza sativa L.) is a highly consumed staple crop worldwide, but abiotic/heavy metal stresses acting on the plant cause reduction in yield and quality, thereby impacting global food security. In the present study, we examined the effect of ß-pinene against Arsenic (As)-induced oxidative damage vis-à-vis regulation of activities of enzymatic antioxidants in roots of O. sativa. Effect of As (50 µM), ß-pinene (10 µM; ß-10) and As + ß-10 treatments on root length, shoot length, As accumulation, lipid peroxidation (as malondialdehyde [MDA] content), hydrogen peroxide (H2O2) accumulation, and activities of lipoxygenase (LOX) and enzymatic antioxidants such as ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) was determined. Exposure of As caused a decline in root and shoot length, and enhancement in As accumulation, lipid peroxidation, and activities of enzymatic antioxidants. However, supplementation of ß-10 (i.e., As + ß-10 treatments) led to an increase in root and shoot length. Treatment with As + ß-10 resulted in a decline in As accumulation, H2O2 content, and MDA content; however, the effect on LOX activity was non-significant, as compared to control. Similarly, with As + ß-10 treatment a reduction in the activities of APX, GPX, GR, SOD, and CAT was observed as compared with As-alone treatment. Pearson's correlation matrix exhibited strong negative correlation between reactive oxygen species (ROS) and root/shoot length, whereas a strong positive correlation was observed between antioxidant enzymes and ROS. The present study demonstrated that ß-pinene significantly ameliorates As-induced oxidative stress and provides tolerance to O. sativa against As-induced toxicity, and thus offer an option of As-mitigation using environment friendly natural plant products. However, to gain insights into the function of ß-pinene in modulating As-induced oxidative damage in plants, further field investigations and exploration of its mechanism of action are needed.


Subject(s)
Arsenic , Oryza , Antioxidants/metabolism , Arsenic/toxicity , Bicyclic Monoterpenes , Catalase/metabolism , Hydrogen Peroxide , Lipid Peroxidation , Oryza/metabolism , Oxidative Stress , Plant Roots/metabolism , Superoxide Dismutase/metabolism
8.
Molecules ; 26(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34500778

ABSTRACT

Parthenin, a sesquiterpene lactone of pseudoguaianolide type, is the representative secondary metabolite of the tropical weed Parthenium hysterophorus (Asteraceae). It accounts for a multitude of biological activities, including toxicity, allergenicity, allelopathy, and pharmacological aspects of the plant. Thus far, parthenin and its derivatives have been tested for chemotherapeutic abilities, medicinal properties, and herbicidal/pesticidal activities. However, due to the lack of toxicity-bioactivity relationship studies, the versatile properties of parthenin are relatively less utilised. The possibility of exploiting parthenin in different scientific fields (e.g., chemistry, medicine, and agriculture) makes it a subject of analytical discussion. The present review highlights the multifaceted uses of parthenin, on-going research, constraints in the practical applicability, and the possible workarounds for its successful utilisation. The main aim of this comprehensive discussion is to bring parthenin to the attention of researchers, pharmacologists, natural product chemists, and chemical biologists and to open the door for its multidimensional applications.


Subject(s)
Asteraceae/chemistry , Sesquiterpenes/pharmacology , Asteraceae/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism
9.
Environ Monit Assess ; 193(8): 526, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34322773

ABSTRACT

Industrial effluents contain hazardous substances that can be a serious threat to the agriculture and human health. In the present study, the cytotoxic and genotoxic impacts of agricultural soil from the industrial area of Dera Bassi (Punjab, India) have been evaluated. Assays such as defects in DNA repair in K-12 mutants of Escherichia coli and chromosomal aberrations in Allium cepa were used to estimate the acute toxicity and chromosomal mutagenesis, respectively. Atomic absorption spectrometry and GC-MS analysis revealed contamination of the soil with high concentrations of heavy metals and organic compounds, respectively. Dichloromethane extract of site I soil sample caused maximum damage to 40 µL mL-1 DNA repair defective mutants and showed 38 and 49% survival in lexA and recA mutants, respectively, which was least among all the sites. In A. cepa test, an inverse relationship between soil extract concentration and the mitotic index was observed. Exposure of growing roots of A. cepa to soil extracts induced chromosomal abnormalities and alterations in mitotic phases in root tip cells. The study concludes that agricultural sites near the industrial area were contaminated with genotoxic and mutagenic compounds. Hence, adequate measures should be taken to reduce the toxicity of industrial effluents discharged onto the agricultural fields.


Subject(s)
Environmental Monitoring , Soil , Agriculture , Chromosome Aberrations , DNA Damage , Humans , India , Onions/genetics , Plant Roots
10.
Front Plant Sci ; 12: 690806, 2021.
Article in English | MEDLINE | ID: mdl-34220914

ABSTRACT

Calotropis procera (Aiton) Dryand. (commonly known as the apple of sodom, calotrope, and giant milkweed) is an evergreen, perennial shrub of the family Apocynaceae, mainly found in arid and semi-arid regions. It is a multipurpose plant, which can be utilized for medicine, fodder, and fuel purposes, timber and fiber production, phytoremediation, and synthesis of nanoparticles. It has been widely used in traditional medicinal systems across North Africa, Middle East Asia, and South-East Asia. At present, it is being extensively explored for its potential pharmacological applications. Several reports also suggest its prospects in the food, textile, and paper industries. Besides, C. procera has also been acknowledged as an ornamental species. High pharmacological potential and socio-economic value have led to the pantropical introduction of the plant. Morpho-physiological adaptations and the ability to tolerate various abiotic stresses enabled its naturalization beyond the introduced areas. Now, it is recognized as an obnoxious environmental weed in several parts of the world. Its unnatural expansion has been witnessed in the regions of South America, the Caribbean Islands, Australia, the Hawaiian Islands, Mexico, Seychelles, and several Pacific Islands. In Australia, nearly 3.7 million hectares of drier areas, including rangelands and Savannahs, have been invaded by the plant. In this review, multiple aspects of C. procera have been discussed including its general characteristics, current and potential uses, and invasive tendencies. The objectives of this review are a) to compile the information available in the literature on C. procera, to make it accessible for future research, b) to enlist together its potential applications being investigated in different fields, and c) to acknowledge C. procera as an emerging invasive species of arid and semi-arid regions.

11.
Environ Monit Assess ; 193(6): 334, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33973105

ABSTRACT

Calyptocarpus vialis (syn. Synedrella vialis; Asteraceae), a native of the tropical Americas, has acquired an invasive status in the eastern Asia and Africa and, of late, in India. It is an annual herbaceous weed that forms a dominant ground cover due to its prostrate expansion and interferes with the growth of other plant species. However, the reasons for this interference are largely unknown. Therefore, we examined the allelopathic interference of C. vialis via leachation and residue degradation on the emergence, growth, and development of three crop species (Brassica nigra, Triticum aestivum, and Avena sativa). In a laboratory bioassay, the leachates (0.5-4%) of C. vialis exhibited a dose-dependent inhibitory effect on various growth parameters of the test plants. Similarly, under screenhouse, C. vialis-amended soil (1-4%) affected the growth of test species in a dose-dependent manner. Further, the phytotoxicity of the residues of C. vialis was examined using rhizospheric soil (RS) and residue-amended soil (RAS). It was observed that RAS exerted the maximum allelopathic effect on the test species accompanied by significant changes in pH, electrical conductivity, and total water-soluble phenolic content, as compared with the control soil (CS) and RS. Liquid chromatography and mass spectroscopy analyses confirmed the presence of eleven allelochemicals as the major phytotoxins. The study demonstrated that C. vialis exerts strong phytotoxic effects on other plants through the release of potent allelochemicals, both via leachation and residue degradation.


Subject(s)
Asteraceae , Introduced Species , Africa , Environmental Monitoring , Asia, Eastern , India
12.
Ecotoxicol Environ Saf ; 188: 109786, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31698176

ABSTRACT

In the last few decades, tremendous increase in the use of wireless electronic gadgets, particularly the cell phones, has significantly enhanced the levels of electromagnetic field radiations (EMF-r) in the environment. Therefore, it is pertinent to study the effect of these radiations on biological systems including plants. We investigated comparative cytotoxic and DNA damaging effects of 900 and 1800 MHz EMF-r in Allium cepa (onion) root meristematic cells in terms of mitotic index (MI), chromosomal aberrations (CAs) and single cell gel electrophoresis (comet assay). Onion bulbs were subjected to 900 and 1800 MHz (at power densities 261 ±â€¯8.50 mW m-2 and 332 ±â€¯10.36 mW m-2, respectively) of EMF-r for 0.5 h, 1 h, 2 h, and 4 h. Root length declined by 13.2% and 12.3%, whereas root thickness was increased by 46.7% and 48.3% after 4 h exposure to 900 MHz and 1800 MHz, respectively. Cytogenetic studies exhibited clastogenic effect of EMF-r as depicted by increased CAs and MI. MI increased by 36% and 53% after 2 and 4 h exposure to 900 MHz EMF-r, whereas it increased by 41% and 67% in response to 1800 MHz EMF-r. Aberration index was increased by 41%-266% and 14%-257% during 0.5-4 h of exposure to 900 MHz and 1800 MHz, respectively, over the control. EMF-r exposure decreased % head DNA (DNAH) and increased % tail DNA (DNAT) and olive tail moment (OTM) at both 900 and 1800 EMF-r. In 4 h exposure treatments, head DNA (%) declined by 19% and 23% at 900 MHz and 1800 MHz, respectively. DNAT and OTM were increased by 2.3 and 3.7 fold upon exposure to 900 MHz EMF-r over that in the control, whereas 2.8 and 5.8 fold increase was observed in response to 1800 MHz EMF-r exposure for 4 h and the difference was statistically significant. The study concludes that EMF-r in the communication range (900 and 1800 MHz) adversely affect root meristems in plants and induce cytotoxic and DNA damage. EMF-r induced DNA damage was more pronounced at 1800 MHz than that at 900 MHz.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Damage , Electromagnetic Fields/adverse effects , Electromagnetic Radiation , Meristem/radiation effects , Onions/radiation effects , Cell Phone , Comet Assay , Dose-Response Relationship, Radiation , Meristem/cytology , Meristem/genetics , Mitotic Index , Onions/cytology , Onions/genetics , Time Factors
13.
J Environ Health Sci Eng ; 17(1): 97-104, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31297205

ABSTRACT

BACKGROUND: The exponential increase of electromagnetic field radiations (EMF-r) in the natural environment has raked up the controversies regarding their biological effects. Concern regarding the putative capacity of EMF-r to affect living beings has been growing due to the ongoing elevation in the use of high frequency EMF-r in communication systems, e.g. Mobile phones. METHODS: In the present study, we tried to examine the cyto- and genotoxic potential of mobile phone EMF-r at 2350 MHz using onions (Allium cepa L.). Fresh adventitious onion roots were exposed to continuous EMF-r at 2350 MHz for different time periods (1 h, 2 h and 4 h). The evaluation of cytotoxicity was done in terms of mitotic index (MI), phase index and chromosomal aberrations. Genotoxicity was investigated employing comet assay in terms of changes in % HDNA (head DNA) and % TDNA (tail DNA), TM (tail moment) and OTM (olive tail moment). Data were analyzed using one-way ANOVA and mean values were separated using post hoc Tukey's test. RESULTS: The results manifested a significant increase of MI and chromosomal aberrations (%) upon 4 h, and ≥ 2 h of exposure, respectively, as compared to the control. No specific changes in phase index in response to EMF-r exposure were observed. The % HDNA and % TDNA values exhibited significant changes in contrast to that of control upon 2 h and 4 h of exposure, respectively. However, TM and OTM did not change significantly. CONCLUSIONS: Our results infer that continuous exposures of radiofrequency EMF-r (2350 MHz) for long durations have a potential of inciting cyto- and genotoxic effects in onion root meristems.

14.
Protoplasma ; 256(5): 1399-1407, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31115694

ABSTRACT

The present study evaluated the potential of 2100 MHz radiofrequency radiations to act as cytotoxic and genotoxic agent. Fresh onion (Allium cepa L.) roots were exposed to electromagnetic field radiations (EMF-r) for different durations (1 h and 4 h) and evaluated for mitotic index (MI), phase index, chromosomal aberrations, and DNA damage. DNA damage was investigated with the help of the comet assay by assessing various parameters like % head DNA (HDNA), % tail DNA (TDNA), tail moment (TM), and olive tail moment (OTM). Effects of EMF-r exposure were also compared with that of methyl methanesulfonate (MMS; 90 µM), which acted as a positive control. The post-exposure effects of EMF-r after providing the test plants with an acclimatization period of 24 h were also evaluated. Compared to the control, a significant increase in the MI and aberration percentage was recorded upon 4 h of exposure. However, no specific trend of phase index in response to exposure was detected. EMF-r exposure incited DNA damage with a significant decrease in HDNA accompanied by an increase in TDNA upon exposure of 4 h. However, TM and OTM did not change significantly upon exposure as compared to that of control. Analysis of the post-exposure effects of EMF-r did not show any significant change/recovery. Our data, thus, suggest the potential cytotoxic and genotoxic nature of 2100 MHz EMF-r. Our study bears great significance in view of the swiftly emergent EMF-r in the surrounding environment and their potential for inciting aberrations at the chromosomal level, thus posing a genetic hazard.


Subject(s)
Cell Phone/trends , DNA/radiation effects , Electromagnetic Radiation , Meristem/drug effects , Mitotic Index/methods , Onions/drug effects
15.
J Environ Manage ; 241: 187-197, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31003061

ABSTRACT

Invasive plant species constantly adjust their behavior with ecological shifts by virtue of phenotypic plasticity and/or local adaptations. Changes in the phenotype of an invasive species may also trigger variations in its community level impacts, which is an acceptable, yet unexplored aspect of invasion biology. Our study attempts to fill important knowledge gaps on the basic behavior and ecological interactions of invasive species. Parthenium hysterophorus, a widely distributed invasive alien species of tropical and sub-tropical regions, was evaluated for variations in its morpho-functional traits and ecological performance at a common spatial and temporal scale. Field surveys were conducted in Chandigarh, India, in five sites identified as invaded with P. hysterophorus. Individuals of P. hysterophorus randomly sampled from these sites, showed from trait analyses that the population is differentiated into two morphotypes, PA and PB. Morphotype PB exhibits traits comparable to the shrub life-form in terms of woody stem (with higher stem circumference [+32.26%], stem specific density [+128.57%], twig dry matter content [+25.15%]); profuse branching (+46.38%); larger canopy (+91.16%); and better reproductive output (+190.29%) compared to PA. PA, on the other hand, reflected herbaceous characteristics with greater leaf area (+67.58%) and higher content of chlorophyll (+21.92%) compared to PB. Based on these morphotypes, the plots were divided into three invasion categories: areas invaded by PA [IPA], areas invaded by PB [IPB] and uninvaded areas [UI]. Ecological indices and soil chemical properties were compared across IPA, IPB and UI. Shannon's index (p < 0.001), evenness index (p = 0.008), and richness index (p < 0.001) were significantly lower in IPB compared to IPA. UI areas were found to have higher soil pH, phenolics, organic matter, and concentrations of N, P and K, compared to IPA and IPB, but lower Ca and Mg. Results suggest that phenotypic variations within population of P. hysterophorus regulate its ecological impact on associated vegetation. Conservation managers would benefit from studying its invasion patterns and identifying the morphotype with higher ecological impact to prioritize management efforts. Monitoring these behavioral and ecological patterns in P. hysterophorus over the long-term may also help in anticipating challenges to preventive measures.


Subject(s)
Asteraceae , Introduced Species , Biological Variation, Population , Humans , India , Soil
16.
Environ Sci Pollut Res Int ; 26(1): 456-463, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30406586

ABSTRACT

We examined the possible role of monoterpene ß-pinene in providing protection against Cr(VI) toxicity in maize (Zea mays). Treatment with ß-pinene (10 µM) significantly alleviated Cr(VI) accumulation and recuperated Cr(VI) caused decline in root and coleoptile growth in maize. ß-Pinene addition caused a decline in Cr(VI)-induced accumulation of superoxide anion, hydroxyl ion, hydrogen peroxide and confirmed by in-situ detection of ROS using histochemical localization. It suggested that the ß-pinene quenches/neutralizes enhanced ROS generated under Cr(VI) exposure. ß-Pinene also reduced Cr(VI)-induced electrolyte leakage, thereby suggesting its role in membrane stabilization. Further, ß-pinene regulated the activity of scavenging enzymes, thereby suggesting a role in modulating Cr(VI)-induced oxidative damage. In conclusion, our results suggest that the addition of ß-pinene has a protective role against Cr(VI) stress and provides resistance to maize against Cr(VI) toxicity.


Subject(s)
Bridged Bicyclo Compounds/metabolism , Chromium/toxicity , Monoterpenes/metabolism , Zea mays/physiology , Antioxidants , Bicyclic Monoterpenes , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species , Superoxides , Zea mays/drug effects
17.
J Microsc Ultrastruct ; 5(4): 225-229, 2017.
Article in English | MEDLINE | ID: mdl-30023258

ABSTRACT

During the last few decades there has been an enormous increase in the usage of cell phones as these are one of the most convenient gadgets and provide excellent mode of communication without evoking any hindrance to movement. However, these are significantly adding to the electromagnetic field radiations (EMF-r) in the environment and thus, are required to be analysed for their impacts on living beings. The present study investigated the role of cell phone EMF-r in inciting oxidative damage in onion (Allium cepa) roots at a frequency of 2100 MHz. Onion roots were exposed to continuous wave homogenous EMF-r for 1, 2 and 4 h for single day and generation of reactive oxygen species (ROS) in terms of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2•-) content and changes in the activities of antioxidant enzymes- superoxide dismutases (SOD) and catalases (CAT) were measured. The results showed that EMF-r exposure enhanced the content of MDA, H2O2 and O2•-. Also, there was an upregulation in the activity of antioxidant enzymes- SOD and CAT- in onion roots. The study concluded that 2100 MHz cell phone EMF-r incite oxidative damage in onion roots by altering the oxidative metabolism.

18.
Protoplasma ; 253(4): 1043-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26277350

ABSTRACT

The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and ß-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.


Subject(s)
Electromagnetic Radiation , Seedlings/growth & development , Starch/metabolism , Sucrose/metabolism , Zea mays/growth & development , Amylases/metabolism , Carbohydrate Metabolism/radiation effects , Phosphoric Monoester Hydrolases/metabolism , Plant Proteins/metabolism , Seedlings/metabolism , Seedlings/radiation effects , Starch Phosphorylase/metabolism , Zea mays/metabolism , Zea mays/radiation effects , beta-Fructofuranosidase/metabolism
19.
Environ Monit Assess ; 186(6): 3379-89, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24477614

ABSTRACT

Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants-Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.


Subject(s)
Environmental Monitoring , Introduced Species , Lantana/growth & development , Plant Weeds/growth & development , Trees/classification , Biomass , Ecosystem , India , Rhizosphere , Soil/chemistry
20.
Protoplasma ; 250(3): 691-700, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22936022

ABSTRACT

ß-Pinene, an oxygenated monoterpene, is abundantly found in the environment and widely occurring in plants as a constituent of essential oils. We investigated the phytotoxicity of ß-pinene against two grassy (Phalaris minor, Echinochloa crus-galli) and one broad-leaved (Cassia occidentalis) weeds in terms of germination and root and shoot growth. ß-Pinene (0.02-0.80 mg/ml) inhibited the germination, root length, and shoot length of test weeds in a dose-response manner. The inhibitory effect of ß-pinene was greater in grassy weeds and on root growth than on shoot growth. ß-Pinene (0.04-0.80 mg/ml) reduced the root length in P. minor, E. crus-galli, and C. occidentalis over that in the control by 58-60, 44-92, and 26-85 %, respectively. In contrast, shoot length was reduced over the control by 45-97 % in P. minor, 48-78 % in E. crus-galli, and 11-75 % in C. occidentalis at similar concentrations. Further, we examined the impact of ß-pinene on membrane integrity in P. minor as one of the possible mechanisms of action. Membrane integrity was evaluated in terms of lipid peroxidation, conjugated diene content, electrolyte leakage, and the activity of lipoxygenases (LOX). ß-Pinene (≥0.04 mg/ml) enhanced electrolyte leakage by 23-80 %, malondialdehyde content by 15-67 %, hydrogen peroxide content by 9-39 %, and lipoxygenases activity by 38-383 % over that in the control. It indicated membrane peroxidation and loss of membrane integrity that could be the primary target of ß-pinene. Even the enhanced (9-62 %) activity of protecting enzymes, peroxidases (POX), was not able to protect the membranes from ß-pinene (0.04-0.20 mg/ml)-induced toxicity. In conclusion, our results show that ß-pinene inhibits root growth of the tested weed species through disruption of membrane integrity as indicated by enhanced peroxidation, electrolyte leakage, and LOX activity despite the upregulation of POX activity.


Subject(s)
Bridged Bicyclo Compounds/pharmacology , Germination/drug effects , Herbicides/pharmacology , Monoterpenes/pharmacology , Plant Roots/drug effects , Plant Shoots/drug effects , Bicyclic Monoterpenes , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Dose-Response Relationship, Drug , Echinochloa/drug effects , Echinochloa/enzymology , Echinochloa/growth & development , Electric Conductivity , Electrolytes/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Lipoxygenase/metabolism , Malondialdehyde/metabolism , Peroxidases/metabolism , Phalaris/drug effects , Phalaris/enzymology , Phalaris/growth & development , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Shoots/growth & development , Senna Plant/drug effects , Senna Plant/enzymology , Senna Plant/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL