Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6706, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872144

ABSTRACT

Peptidoglycan, a gigadalton polymer, functions as the scaffold for bacterial cell walls and provides cell integrity. Peptidoglycan is remodelled by a large and diverse group of peptidoglycan hydrolases, which control bacterial cell growth and division. Over the years, many studies have focused on these enzymes, but knowledge on their action within peptidoglycan mesh from a molecular basis is scarce. Here, we provide structural insights into the interaction between short peptidoglycan fragments and the entire sacculus with two evolutionarily related peptidases of the M23 family, lysostaphin and LytM. Through nuclear magnetic resonance, mass spectrometry, information-driven modelling, site-directed mutagenesis and biochemical approaches, we propose a model in which peptidoglycan cross-linking affects the activity, selectivity and specificity of these two structurally related enzymes differently.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Peptidoglycan/chemistry , Hydrolases , Lysostaphin/analysis , Lysostaphin/chemistry , Mass Spectrometry/methods , Cell Wall/chemistry
2.
Sci Rep ; 12(1): 18964, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347916

ABSTRACT

CK2 is a member of the CMGC group of eukaryotic protein kinases and a cancer drug target. It can be efficiently inhibited by halogenated benzotriazoles and benzimidazoles. Depending on the scaffold, substitution pattern, and pH, these compounds are either neutral or anionic. Their binding poses are dictated by a hydrophobic effect (desolvation) and a tug of war between a salt bridge/hydrogen bond (to K68) and halogen bonding (to E114 and V116 backbone oxygens). Here, we test the idea that binding poses might be controllable by pH for ligands with near-neutral pKa, using the conditionally anionic 5,6-DBBt and constitutively anionic TBBt as our models. We characterize the binding by low-volume Differential Scanning Fluorimetry (nanoDSF), Isothermal Calorimetry (ITC), Hydrogen/Deuterium eXchange (HDX), and X-ray crystallography (MX). The data indicate that the ligand pose away from the hinge dominates for the entire tested pH range (5.5-8.5). The insensitivity of the binding mode to pH is attributed to the perturbation of ligand pKa upon binding that keeps it anionic in the ligand binding pocket at all tested pH values. However, a minor population of the ligand, detectable only by HDX, shifts towards the hinge in acidic conditions. Our findings demonstrate that electrostatic (ionic) interactions predominate over halogen bonding.


Subject(s)
Halogens , Proteins , Ligands , Static Electricity , Halogens/chemistry , Protein Binding , Thermodynamics , Proteins/chemistry , Hydrogen Bonding , Crystallography, X-Ray
3.
Front Microbiol ; 13: 1036964, 2022.
Article in English | MEDLINE | ID: mdl-36386627

ABSTRACT

Bacterial cell walls are the guards of cell integrity. They are composed of peptidoglycan that provides rigidity to sustain internal turgor and ensures isolation from the external environment. In addition, they harbor the enzymatic machinery to secure cell wall modulations needed throughout the bacterial lifespan. The main players in this process are peptidoglycan hydrolases, a large group of enzymes with diverse specificities and different mechanisms of action. They are commonly, but not exclusively, found in prokaryotes. Although in most cases, these enzymes share the same molecular function, namely peptidoglycan hydrolysis, they are leveraged to perform a variety of physiological roles. A well-investigated family of peptidoglycan hydrolases is M23 peptidases, which display a very conserved fold, but their spectrum of lytic action is broad and includes both Gram- positive and Gram- negative bacteria. In this review, we summarize the structural, biochemical, and functional studies concerning the M23 family of peptidases based on literature and complement this knowledge by performing large-scale analyses of available protein sequences. This review has led us to gain new insight into the role of surface charge in the activity of this group of enzymes. We present relevant conclusions drawn from the analysis of available structures and indicate the main structural features that play a crucial role in specificity determination and mechanisms of latency. Our work systematizes the knowledge of the M23 family enzymes in the context of their unique antimicrobial potential against drug-resistant pathogens and presents possibilities to modulate and engineer their features to develop perfect antibacterial weapons.

4.
Plant J ; 108(5): 1400-1421, 2021 12.
Article in English | MEDLINE | ID: mdl-34592024

ABSTRACT

Lipid anchors are common post-translational modifications for proteins engaged in signaling and vesicular transport in eukaryotic cells. Rab proteins are geranylgeranylated at their C-termini, a modification which is important for their stable binding to lipid bilayers. The Rab escort protein (REP) is an accessory protein of the Rab geranylgeranyl transferase (RGT) complex and it is obligatory for Rab prenylation. While REP-Rab interactions have been studied by biochemical, structural, and genetic methods in animals and yeast, data on the plant RGT complex are still limited. Here we use hydrogen-deuterium exchange mass spectrometry (HDX-MS) to describe the structural basis of plant REP-Rab binding. The obtained results show that the interaction of REP with Rabs is highly dynamic and involves specific structural changes in both partners. In some cases the Rab and REP regions involved in the interaction are molecule-specific, and in other cases they are common for a subset of Rabs. In particular, the C-terminus of REP is not involved in binding of unprenylated Rab proteins in plants, in contrast to mammalian REP. In line with this, a C-terminal REP truncation does not have pronounced phenotypic effects in planta. On the contrary, a complete lack of functional REP leads to male sterility in Arabidopsis: pollen grains develop in the anthers, but they do not germinate efficiently and hence are unable to transmit the mutated allele. The presented data show that the mechanism of action of REP in the process of Rab geranylgeranylation is different in plants than in animals or yeast.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Protein Processing, Post-Translational , Adaptor Proteins, Signal Transducing/genetics , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Plant Infertility , Pollen , Protein Binding , Protein Prenylation , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
5.
Comput Struct Biotechnol J ; 19: 4300-4318, 2021.
Article in English | MEDLINE | ID: mdl-34429849

ABSTRACT

Nucleobindin-2 (Nucb2) is a protein that has been suggested to play roles in a variety of biological processes. Nucb2 contains two Ca2+/Mg2+-binding EF-hand domains separated by an acidic amino acid residue-rich region and a leucine zipper. All of these domains are located within the C-terminal half of the protein. At the N-terminal half, Nucb2 also possesses a putative Zn2+-binding motif. In our recent studies, we observed that Nucb2 underwent Ca2+-dependent compaction and formed a mosaic-like structure consisting of intertwined disordered and ordered regions at its C-terminal half. The aim of this study was to investigate the impact of two other potential ligands: Mg2+, which possesses chemical properties similar to those of Ca2+, and Zn2+, for which a putative binding motif was identified. In this study, we demonstrated that the binding of Mg2+ led to oligomerization state changes with no significant secondary or tertiary structural alterations of Nucb2. In contrast, Zn2+ binding had a more pronounced effect on the structure of Nucb2, leading to the local destabilization of its N-terminal half while also inducing changes within its C-terminal half. These structural rearrangements resulted in the oligomerization and/or aggregation of Nucb2 molecules. Taken together, the results of our previous and current research help to elucidate the structure of the Nucb2, which can be divided into two parts: the Zn2+-sensitive N-terminal half (consisting of nesfatin-1 and -2) and the Ca2+-sensitive C-terminal half (consisting of nesfatin-3). These results may also help to open a new discussion regarding the diverse roles that metal cations play in regulating the structure of Nucb2 and the various physiological functions of this protein.

6.
FEBS J ; 287(24): 5304-5322, 2020 12.
Article in English | MEDLINE | ID: mdl-32255262

ABSTRACT

Vimentin intermediate filaments are a significant component of the cytoskeleton in cells of mesenchymal origin. In vivo, filaments assemble and disassemble and thus participate in the dynamic processes of the cell. Post-translational modifications (PTMs) such as protein phosphorylation regulate the multiphasic association of vimentin from soluble complexes to insoluble filaments and the reverse processes. The thiol side chain of the single vimentin cysteine at position 328 (Cys328) is a direct target of oxidative modifications inside cells. Here, we used atomic force microscopy, electron microscopy and a novel hydrogen-deuterium exchange mass spectrometry (HDex-MS) procedure to investigate the structural consequences of S-nitrosylation and S-glutathionylation of Cys328 for in vitro oligomerisation of human vimentin. Neither modification affects the lateral association of tetramers to unit-length filaments (ULF). However, S-glutathionylation of Cys328 blocks the longitudinal assembly of ULF into extended filaments. S-nitrosylation of Cys328 does not hinder but slows down the elongation. Likewise, S-glutathionylation of preformed vimentin filaments causes their extensive fragmentation to smaller oligomeric species. Chemical reduction of the S-glutathionylated Cys328 thiols induces reassembly of the small fragments into extended filaments. In conclusion, our in vitro results suggest S-glutathionylation as a candidate PTM for an efficient molecular switch in the dynamic rearrangements of vimentin intermediate filaments, observed in vivo, in response to changes in cellular redox status. Finally, we demonstrate that HDex-MS is a powerful method for probing the kinetics of vimentin filament formation and filament disassembly induced by PTMs.


Subject(s)
Cysteine/metabolism , Cytoskeleton/pathology , Glutathione/metabolism , Intermediate Filaments/pathology , Protein Processing, Post-Translational , Vimentin/chemistry , Vimentin/metabolism , Cysteine/chemistry , Cytoskeleton/metabolism , Glutathione/chemistry , Humans , In Vitro Techniques , Intermediate Filaments/metabolism , Kinetics , Oxidation-Reduction , Phosphorylation , Protein Multimerization
7.
J Steroid Biochem Mol Biol ; 183: 167-183, 2018 10.
Article in English | MEDLINE | ID: mdl-29944921

ABSTRACT

Nuclear receptors (NRs) are a family of ligand-dependent transcription factors activated by lipophilic compounds. NRs share a common structure comprising three domains: a variable N-terminal domain (NTD), a highly conserved globular DNA-binding domain and a ligand-binding domain. There are numerous papers describing the molecular details of the latter two globular domains. However, very little is known about the structure-function relationship of the NTD, especially as an intrinsically disordered fragment of NRs that may influence the molecular properties and, in turn, the function of globular domains. Here, we investigated whether and how an intrinsically disordered NTD consisting of 58 amino acid residues affects the functions of the globular domains of the Ultraspiracle protein from Helicoverpa armigera (HaUsp). The role of the NTD was examined for two well-known and easily testable NR functions, i.e., interactions with specific DNA sequences and dimerization. Electrophoretic mobility shift assays showed that the intrinsically disordered NTD influences the interaction of HaUsp with specific DNA sequences, apparently by destabilization of HaUsp-DNA complexes. On the other hand, multi-angle light scattering and sedimentation velocity analytical ultracentrifugation revealed that the NTD acts as a structural element that stabilizes HaUsp homodimers. Molecular models based on small-angle X-ray scattering indicate that the intrinsically disordered NTD may exert its effects on the tested HaUsp functions by forming an unexpected scorpion-like structure, in which the NTD bends towards the ligand-binding domain in each subunit of the HaUsp homodimer. This structure may be crucial for specific NTD-dependent regulation of the functions of globular domains in NRs.


Subject(s)
DNA/chemistry , Insect Proteins/chemistry , Intrinsically Disordered Proteins/chemistry , Protein Interaction Domains and Motifs , Animals , DNA/metabolism , Insect Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Moths , Protein Conformation
8.
J Biol Chem ; 291(48): 24931-24950, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27694444

ABSTRACT

Intermediate filaments (IF) are major constituents of the cytoskeleton of metazoan cells. They are not only responsible for the mechanical properties but also for various physiological activities in different cells and tissues. The building blocks of IFs are extended coiled-coil-forming proteins exhibiting a characteristic central α-helical domain ("rod"). The fundamental principles of the filament assembly mechanism and the network formation have been widely elucidated for the cytoplasmic IF protein vimentin. Also, a comprehensive structural model for the tetrameric complex of vimentin has been obtained by X-ray crystallography in combination with various biochemical and biophysical techniques. To extend these static data and to investigate the dynamic properties of the full-length proteins in solution during the various assembly steps, we analyzed the patterns of hydrogen-deuterium exchange in vimentin and in four variants carrying point mutations in the IF consensus motifs present at either end of the α-helical rod that cause an assembly arrest at the unit-length filament (ULF) stage. The results yielded unique insights into the structural properties of subdomains within the full-length vimentin, in particular in regions of contact in α-helical and linker segments that stabilize different oligomeric forms such as tetramers, ULFs, and mature filaments. Moreover, hydrogen-deuterium exchange analysis of the point-mutated variants directly demonstrated the active role of the IF consensus motifs in the oligomerization mechanism of tetramers during ULF formation. Ultimately, using molecular dynamics simulation procedures, we provide a structural model for the subdomain-mediated tetramer/tetramer interaction via "cross-coiling" as the first step of the assembly process.


Subject(s)
Molecular Dynamics Simulation , Protein Multimerization , Vimentin/chemistry , Amino Acid Motifs , Deuterium Exchange Measurement , Humans , Point Mutation , Vimentin/genetics
9.
J Struct Biol ; 192(3): 426-440, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26434626

ABSTRACT

Keratins are intermediate filament (IF) proteins that form complex filament systems in epithelial cells, thus serving as scaffolding elements and mechanical stress absorbers. The building blocks of keratin IFs are parallel coiled-coil dimers of two distinct sequence-related proteins distinguished as type I and type II keratins. To gain more insight into their structural dynamics, we resorted to hydrogen-deuterium exchange mass spectrometry of keratins K8 and K18, which are characteristic for simple epithelial cells. Using this powerful technique not employed with IFs before, we mapped patterns of protected versus unprotected regions in keratin complexes at various assembly levels. In particular, we localized protein segments exhibiting different hydrogen exchange patterns in tetramers versus filaments. We observed a general pattern of precisely positioned regions of stability intertwining with flexible regions, mostly represented by the non-α-helical segments. Notably, some regions within the coiled-coil domains are significantly more dynamic than others, while the IF-consensus motifs at the end domains of the central α-helical "rod" segment, which mediate the "head-to-tail" dimer-dimer interaction in the filament elongation process, become distinctly more protected upon formation of filaments. Moreover, to gain more insight into the dynamics of the individual keratins, we investigated the properties of homomeric preparations of K8 and K18. The physiological importance of keratins without a partner is encountered in both pathological and experimental situations when one of the two species is present in robust excess or completely absent, such as in gene-targeted mice.


Subject(s)
Deuterium Exchange Measurement , Epithelial Cells/metabolism , Intermediate Filaments/metabolism , Keratins/metabolism , Amino Acid Sequence , Cytoskeleton/metabolism , Protein Structure, Tertiary
10.
PLoS One ; 10(9): e0137074, 2015.
Article in English | MEDLINE | ID: mdl-26325194

ABSTRACT

Two major lipophilic hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH), govern insect development and growth. While the mode of action of 20E is well understood, some understanding of JH-dependent signalling has been attained only in the past few years, and the crosstalk of the two hormonal pathways remains unknown. Two proteins, the calponin-like Chd64 and immunophilin FKBP39 proteins, have recently been found to play pivotal roles in the formation of dynamic, multiprotein complex that cross-links these two signalling pathways. However, the molecular mechanism of the interaction remains unexplored. The aim of this work was to determine structural elements of Chd64 to provide an understanding of molecular basis of multiple interactions. We analysed Chd64 in two unrelated insect species, Drosophila melanogaster (DmChd64) and Tribolium castaneum (TcChd64). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS), we showed that both Chd64 proteins have disordered tails that outflank the globular core. The folds of the globular cores of both Chd64 resemble the calponin homology (CH) domain previously resolved by crystallography. Monitoring the unfolding of DmChd64 and TcChd64 by far-ultraviolet (UV) circular dichroism (CD) spectroscopy, fluorescence spectroscopy and size-exclusion chromatography (SEC) revealed a highly complex process. Chd64 unfolds and forms of a molten globule (MG)-like intermediate state. Furthermore, our data indicate that in some conditions, Chd64 may exists in discrete structural forms, indicating that the protein is pliable and capable of easily acquiring different conformations. The plasticity of Chd64 and the existence of terminal intrinsically disordered regions (IDRs) may be crucial for multiple interactions with many partners.


Subject(s)
DNA-Binding Proteins/chemistry , Drosophila Proteins/chemistry , Protein Unfolding , Animals , Chromatography, Gel , Circular Dichroism , Drosophila melanogaster , Spectrum Analysis
11.
Nucleic Acids Res ; 42(13): 8745-54, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24966351

ABSTRACT

R.DpnI consists of N-terminal catalytic and C-terminal winged helix domains that are separately specific for the Gm6ATC sequences in Dam-methylated DNA. Here we present a crystal structure of R.DpnI with oligoduplexes bound to the catalytic and winged helix domains and identify the catalytic domain residues that are involved in interactions with the substrate methyl groups. We show that these methyl groups in the Gm6ATC target sequence are positioned very close to each other. We further show that the presence of the two methyl groups requires a deviation from B-DNA conformation to avoid steric conflict. The methylation compatible DNA conformation is complementary with binding sites of both R.DpnI domains. This indirect readout of methylation adds to the specificity mediated by direct favorable interactions with the methyl groups and solvation/desolvation effects. We also present hydrogen/deuterium exchange data that support 'crosstalk' between the two domains in the identification of methylated DNA, which should further enhance R.DpnI methylation specificity.


Subject(s)
DNA Methylation , DNA/chemistry , Deoxyribonucleases, Type II Site-Specific/chemistry , Adenine/analogs & derivatives , Adenine/chemistry , Base Pairing , Catalytic Domain , DNA/metabolism , Deoxyribonucleases, Type II Site-Specific/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Protein Structure, Tertiary
12.
Protein Sci ; 23(5): 639-51, 2014 May.
Article in English | MEDLINE | ID: mdl-24591271

ABSTRACT

RACK1 is a member of the WD repeat family of proteins and is involved in multiple fundamental cellular processes. An intriguing feature of RACK1 is its ability to interact with at least 80 different protein partners. Thus, the structural features enabling such interactomic flexibility are of great interest. Several previous studies of the crystal structures of RACK1 orthologs described its detailed architecture and confirmed predictions that RACK1 adopts a seven-bladed ß-propeller fold. However, this did not explain its ability to bind to multiple partners. We performed hydrogen-deuterium (H-D) exchange mass spectrometry on three orthologs of RACK1 (human, yeast, and plant) to obtain insights into the dynamic properties of RACK1 in solution. All three variants retained similar patterns of deuterium uptake, with some pronounced differences that can be attributed to RACK1's divergent biological functions. In all cases, the most rigid structural elements were confined to B-C turns and, to some extent, strands B and C, while the remaining regions retained much flexibility. We also compared the average rate constants for H-D exchange in different regions of RACK1 and found that amide protons in some regions exchanged at least 1000-fold faster than in others. We conclude that its evolutionarily retained structural architecture might have allowed RACK1 to accommodate multiple molecular partners. This was exemplified by our additional analysis of yeast RACK1 dimer, which showed stabilization, as well as destabilization, of several interface regions upon dimer formation.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , GTP-Binding Proteins/chemistry , Neoplasm Proteins/chemistry , Receptors, Cell Surface/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Amino Acid Sequence , Deuterium Exchange Measurement , Humans , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Multimerization , Receptors for Activated C Kinase , Sequence Alignment
13.
FEBS J ; 280(20): 4943-59, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23802566

ABSTRACT

Superoxide dismutase 1 (Sod1) is a major superoxide-scavenging enzyme in the eukaryotic cell, and is localized in the cytosol and intermembrane space of mitochondria. Sod1 requires its specific chaperone Ccs1 and disulfide bond formation in order to be retained in the intermembrane space. Our study identified a pool of Sod1 that is present in the reduced state in mitochondria that lack Ccs1. We created yeast mutants with mutations in highly conserved amino acid residues corresponding to human mutations that cause amyotrophic lateral sclerosis, and found that some of the mutant proteins were present in the reduced state. These mutant variants of Sod1 were efficiently localized in mitochondria. Localization of the reduced, Ccs1-independent forms of Sod1 relied on Mia40, an essential component of the mitochondrial intermembrane space import and assembly pathway that is responsible for the biogenesis of intermembrane space proteins. Furthermore, the mitochondrial inner membrane organizing system (MINOS), which is responsible for mitochondrial membrane architecture, differentially modulated the presence of reduced Sod1 in mitochondria. Thus, we identified novel mitochondrial players that are possibly involved in pathological conditions caused by changes in the biogenesis of Sod1.


Subject(s)
Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Superoxide Dismutase/metabolism , Amino Acid Sequence , Disulfides/metabolism , Humans , Mitochondrial Precursor Protein Import Complex Proteins , Molecular Sequence Data , Oxidation-Reduction , Sequence Homology, Amino Acid , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase-1
14.
Mol Cell Biol ; 33(1): 28-37, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23071092

ABSTRACT

Animal replication-dependent histone pre-mRNAs are processed at the 3' end by endonucleolytic cleavage that is not followed by polyadenylation. The cleavage reaction is catalyzed by CPSF73 and depends on the U7 snRNP and its integral component, Lsm11. A critical role is also played by the 220-kDa protein FLASH, which interacts with Lsm11. Here we demonstrate that the N-terminal regions of these two proteins form a platform that tightly interacts with a unique combination of polyadenylation factors: symplekin, CstF64, and all CPSF subunits, including the endonuclease CPSF73. The interaction is inhibited by alterations in each component of the FLASH/Lsm11 complex, including point mutations in FLASH that are detrimental for processing. The same polyadenylation factors are associated with the endogenous U7 snRNP and are recruited in a U7-dependent manner to histone pre-mRNA. Collectively, our studies identify the molecular mechanism that recruits the CPSF73 endonuclease to histone pre-mRNAs, reveal an unexpected complexity of the U7 snRNP, and suggest that in animal cells polyadenylation factors assemble into two alternative complexes-one specifically crafted to generate polyadenylated mRNAs and the other to generate nonpolyadenylated histone mRNAs that end with the stem-loop.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/metabolism , Histones/metabolism , RNA 3' End Processing , RNA Precursors/metabolism , Ribonucleoprotein, U7 Small Nuclear/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Amino Acid Motifs , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Base Sequence , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage Stimulation Factor , HeLa Cells , Humans , Mice , Molecular Sequence Data , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribonucleoprotein, U7 Small Nuclear/genetics , mRNA Cleavage and Polyadenylation Factors/genetics
15.
Hum Mutat ; 31(2): 151-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19953534

ABSTRACT

Mutations that impair expression or function of the components of the phagocyte NADPH oxidase complex cause chronic granulomatous disease (CGD), which is associated with life-threatening infections and dysregulated granulomatous inflammation. In five CGD patients from four consanguineous families of two different ethnic backgrounds, we found similar genomic homozygous deletions of 1,380 bp comprising exon 5 of NCF2, which could be traced to Alu-mediated recombination events. cDNA sequencing showed in-frame deletions of phase zero exon 5, which encodes one of the tandem repeat motifs in the tetratricopeptide (TPR4) domain of p67-phox. The resulting shortened protein (p67Delta5) had a 10-fold reduced intracellular half-life and was unable to form a functional NADPH oxidase complex. No dominant negative inhibition of oxidase activity by p67Delta5 was observed. We conclude that Alu-induced deletion of the TPR4 domain of p67-phox leads to loss of function and accelerated degradation of the protein, and thus represents a new mechanism causing p67-phox-deficient CGD.


Subject(s)
Alu Elements/genetics , Granulomatous Disease, Chronic/enzymology , Granulomatous Disease, Chronic/genetics , NADPH Oxidases/genetics , Phosphoproteins/deficiency , Sequence Deletion/genetics , Base Sequence , Cell Line , Exons/genetics , Gene Expression Regulation , Half-Life , Humans , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Stability , Protein Structure, Secondary , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Recombination, Genetic/genetics
16.
J Mol Biol ; 369(3): 722-34, 2007 Jun 08.
Article in English | MEDLINE | ID: mdl-17445830

ABSTRACT

Restriction endonuclease BcnI cleaves duplex DNA containing the sequence CC/SGG (S stands for C or G, / designates a cleavage position) to generate staggered products with single nucleotide 5'-overhangs. Here, we show that BcnI functions as a monomer that interacts with its target DNA in 1:1 molar ratio and report crystal structures of BcnI in the absence and in the presence of DNA. In the complex with DNA, BcnI makes specific contacts with all five bases of the target sequence and not just with a half-site, as the protomer of a typical dimeric restriction endonuclease. Our data are inconsistent with BcnI dimerization and suggest that the enzyme introduces double-strand breaks by sequentially nicking individual DNA strands, although this remains to be confirmed by kinetic experiments. BcnI is remotely similar to the DNA repair protein MutH and shares approximately 20% sequence identity with the restriction endonuclease MvaI, which is specific for the related sequence CC/WGG (W stands for A or T). As expected, BcnI is structurally similar to MvaI and recognizes conserved bases in the target sequence similarly but not identically. BcnI has a unique machinery for the recognition of the central base-pair.


Subject(s)
Deoxyribonucleases, Type II Site-Specific/chemistry , Amino Acid Sequence , Base Sequence , Binding Sites , Crystallization , Crystallography, X-Ray , DNA/chemistry , DNA Repair , DNA Repair Enzymes/chemistry , DNA-Binding Proteins/chemistry , Dimerization , Endodeoxyribonucleases/chemistry , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Protein Conformation
17.
Nucleic Acids Res ; 35(6): 2035-46, 2007.
Article in English | MEDLINE | ID: mdl-17344322

ABSTRACT

Restriction endonuclease MvaI recognizes the sequence CC/WGG (W stands for A or T, '/' designates the cleavage site) and generates products with single nucleotide 5'-overhangs. The enzyme has been noted for its tolerance towards DNA modifications. Here, we report a biochemical characterization and crystal structures of MvaI in an apo-form and in a complex with target DNA at 1.5 A resolution. Our results show that MvaI is a monomer and recognizes its pseudosymmetric target sequence asymmetrically. The enzyme consists of two lobes. The catalytic lobe anchors the active site residues Glu36, Asp50, Glu55 and Lys57 and contacts the bases from the minor grove side. The recognition lobe mediates all major grove interactions with the bases. The enzyme in the crystal is bound to the strand with T at the center of the recognition sequence. The crystal structure with calcium ions and DNA mimics the prereactive state. MvaI shows structural similarities to BcnI, which cleaves the related sequence CC/SGG and to MutH enzyme, which is a component of the DNA repair machinery, and nicks one DNA strand instead of making a double-strand break.


Subject(s)
Deoxyribonucleases, Type II Site-Specific/chemistry , Base Sequence , Catalytic Domain , Chromatography, Gel , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , DNA Methylation , Deoxyribonucleases, Type II Site-Specific/metabolism , Models, Molecular , Protein Binding , Substrate Specificity , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...