Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 20(6)2019 06.
Article in English | MEDLINE | ID: mdl-31023719

ABSTRACT

Centriolar satellites are ubiquitous in vertebrate cells. They have recently emerged as key regulators of centrosome/cilium biogenesis, and their mutations are linked to ciliopathies. However, their precise functions and mechanisms of action remain poorly understood. Here, we generated a kidney epithelial cell line (IMCD3) lacking satellites by CRISPR/Cas9-mediated PCM1 deletion and investigated the cellular and molecular consequences of satellite loss. Cells lacking satellites still formed full-length cilia but at significantly lower numbers, with changes in the centrosomal and cellular levels of key ciliogenesis factors. Using these cells, we identified new ciliary functions of satellites such as regulation of ciliary content, Hedgehog signaling, and epithelial cell organization in three-dimensional cultures. However, other functions of satellites, namely proliferation, cell cycle progression, and centriole duplication, were unaffected in these cells. Quantitative transcriptomic and proteomic profiling revealed that loss of satellites affects transcription scarcely, but significantly alters the proteome. Importantly, the centrosome proteome mostly remains unaltered in the cells lacking satellites. Together, our findings identify centriolar satellites as regulators of efficient cilium assembly and function and provide insight into disease mechanisms of ciliopathies.


Subject(s)
Centrioles/genetics , Centrioles/metabolism , Cilia/enzymology , Cilia/metabolism , DNA, Satellite , Organogenesis , Animals , Autoantigens/genetics , Autoantigens/metabolism , Bioaccumulation , Cell Adhesion , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Epithelial Cells , Gene Knockdown Techniques , Gene Rearrangement , Hedgehog Proteins/metabolism , Humans , Mice , Proteome , Transcriptome
2.
PLoS Biol ; 12(4): e1001840, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24737000

ABSTRACT

Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.


Subject(s)
ARNTL Transcription Factors/metabolism , Circadian Clocks/physiology , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Histone Deacetylases/metabolism , Repressor Proteins/metabolism , 3T3 Cells , Amino Acid Sequence , Animals , Artificial Intelligence , Cell Line , Circadian Clocks/genetics , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Circadian Rhythm Signaling Peptides and Proteins/biosynthesis , Circadian Rhythm Signaling Peptides and Proteins/genetics , Cryptochromes/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Glucocorticoid/metabolism , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Sequence Alignment , Transcription, Genetic/genetics
3.
BMC Mol Biol ; 11: 69, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20840750

ABSTRACT

BACKGROUND: Cryptochromes (CRYs) are a class of flavoprotein blue-light signaling receptors found in plants and animals, and they control plant development and the entrainment of circadian rhythms. They also act as integral parts of the central circadian oscillator in humans and other animals. In mammals, the CLOCK-BMAL1 heterodimer activates transcription of the Per and Cry genes as well as clock-regulated genes. The PER2 proteins interact with CRY and CKIε, and the resulting ternary complexes translocate into the nucleus, where they negatively regulate the transcription of Per and Cry core clock genes and other clock-regulated output genes. Recent studies have indicated that the extended C-termini of the mammalian CRYs, as compared to photolyase proteins, interact with PER proteins. RESULTS: We identified a region on mCRY2 (between residues 493 and 512) responsible for direct physical interaction with mPER2 by mammalian two-hybrid and co-immunoprecipitation assays. Moreover, using oligonucleotide-based degenerate PCR, we discovered that mutation of Arg-501 and Lys-503 of mCRY2 within this C-terminal region totally abolishes interaction with PER2. CONCLUSIONS: Our results identify mCRY2 amino acid residues that interact with the mPER2 binding region and suggest the potential for rational drug design to inhibit CRYs for specific therapeutic approaches.


Subject(s)
Cryptochromes/genetics , Cryptochromes/metabolism , Period Circadian Proteins/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Amino Acid Sequence , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Cell Line , Circadian Rhythm/genetics , Humans , Mice , Molecular Sequence Data , Mutagenesis , Period Circadian Proteins/genetics , Sequence Alignment , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...